Probability on Graphs

Probability on Graphs

Author: Geoffrey Grimmett

Publisher: Cambridge University Press

Published: 2018-01-25

Total Pages: 279

ISBN-13: 1108542999

DOWNLOAD EBOOK

This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.


Probability on Trees and Networks

Probability on Trees and Networks

Author: Russell Lyons

Publisher: Cambridge University Press

Published: 2017-01-20

Total Pages: 1023

ISBN-13: 1316785335

DOWNLOAD EBOOK

Starting around the late 1950s, several research communities began relating the geometry of graphs to stochastic processes on these graphs. This book, twenty years in the making, ties together research in the field, encompassing work on percolation, isoperimetric inequalities, eigenvalues, transition probabilities, and random walks. Written by two leading researchers, the text emphasizes intuition, while giving complete proofs and more than 850 exercises. Many recent developments, in which the authors have played a leading role, are discussed, including percolation on trees and Cayley graphs, uniform spanning forests, the mass-transport technique, and connections on random walks on graphs to embedding in Hilbert space. This state-of-the-art account of probability on networks will be indispensable for graduate students and researchers alike.


Discrete Probability Models and Methods

Discrete Probability Models and Methods

Author: Pierre Brémaud

Publisher: Springer

Published: 2017-01-31

Total Pages: 561

ISBN-13: 3319434764

DOWNLOAD EBOOK

The emphasis in this book is placed on general models (Markov chains, random fields, random graphs), universal methods (the probabilistic method, the coupling method, the Stein-Chen method, martingale methods, the method of types) and versatile tools (Chernoff's bound, Hoeffding's inequality, Holley's inequality) whose domain of application extends far beyond the present text. Although the examples treated in the book relate to the possible applications, in the communication and computing sciences, in operations research and in physics, this book is in the first instance concerned with theory. The level of the book is that of a beginning graduate course. It is self-contained, the prerequisites consisting merely of basic calculus (series) and basic linear algebra (matrices). The reader is not assumed to be trained in probability since the first chapters give in considerable detail the background necessary to understand the rest of the book.


Quantum Probability and Spectral Analysis of Graphs

Quantum Probability and Spectral Analysis of Graphs

Author: Akihito Hora

Publisher: Springer Science & Business Media

Published: 2007-07-05

Total Pages: 384

ISBN-13: 3540488634

DOWNLOAD EBOOK

This is the first book to comprehensively cover quantum probabilistic approaches to spectral analysis of graphs, an approach developed by the authors. The book functions as a concise introduction to quantum probability from an algebraic aspect. Here readers will learn several powerful methods and techniques of wide applicability, recently developed under the name of quantum probability. The exercises at the end of each chapter help to deepen understanding.


Random Geometric Graphs

Random Geometric Graphs

Author: Mathew Penrose

Publisher: Oxford University Press

Published: 2003

Total Pages: 345

ISBN-13: 0198506260

DOWNLOAD EBOOK

This monograph provides and explains the mathematics behind geometric graph theory. Applications of this theory are used on the study of neural networks, spread of disease, astrophysics and spatial statistics.


Introduction to Random Graphs

Introduction to Random Graphs

Author: Alan Frieze

Publisher: Cambridge University Press

Published: 2016

Total Pages: 483

ISBN-13: 1107118506

DOWNLOAD EBOOK

The text covers random graphs from the basic to the advanced, including numerous exercises and recommendations for further reading.


The Strange Logic of Random Graphs

The Strange Logic of Random Graphs

Author: Joel Spencer

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 167

ISBN-13: 3662045389

DOWNLOAD EBOOK

The study of random graphs was begun in the 1960s and now has a comprehensive literature. This excellent book by one of the top researchers in the field now joins the study of random graphs (and other random discrete objects) with mathematical logic. The methodologies involve probability, discrete structures and logic, with an emphasis on discrete structures.


Statistics with JMP

Statistics with JMP

Author: Peter Goos

Publisher: John Wiley & Sons

Published: 2015-05-04

Total Pages: 370

ISBN-13: 1119035708

DOWNLOAD EBOOK

Peter Goos, Department of Statistics, University of Leuven, Faculty of Bio-Science Engineering and University of Antwerp, Faculty of Applied Economics, Belgium David Meintrup, Department of Mathematics and Statistics, University of Applied Sciences Ingolstadt, Faculty of Mechanical Engineering, Germany Thorough presentation of introductory statistics and probability theory, with numerous examples and applications using JMP JMP: Graphs, Descriptive Statistics and Probability provides an accessible and thorough overview of the most important descriptive statistics for nominal, ordinal and quantitative data with particular attention to graphical representations. The authors distinguish their approach from many modern textbooks on descriptive statistics and probability theory by offering a combination of theoretical and mathematical depth, and clear and detailed explanations of concepts. Throughout the book, the user-friendly, interactive statistical software package JMP is used for calculations, the computation of probabilities and the creation of figures. The examples are explained in detail, and accompanied by step-by-step instructions and screenshots. The reader will therefore develop an understanding of both the statistical theory and its applications. Traditional graphs such as needle charts, histograms and pie charts are included, as well as the more modern mosaic plots, bubble plots and heat maps. The authors discuss probability theory, particularly discrete probability distributions and continuous probability densities, including the binomial and Poisson distributions, and the exponential, normal and lognormal densities. They use numerous examples throughout to illustrate these distributions and densities. Key features: Introduces each concept with practical examples and demonstrations in JMP. Provides the statistical theory including detailed mathematical derivations. Presents illustrative examples in each chapter accompanied by step-by-step instructions and screenshots to help develop the reader’s understanding of both the statistical theory and its applications. A supporting website with data sets and other teaching materials. This book is equally aimed at students in engineering, economics and natural sciences who take classes in statistics as well as at masters/advanced students in applied statistics and probability theory. For teachers of applied statistics, this book provides a rich resource of course material, examples and applications.


Problems from the Discrete to the Continuous

Problems from the Discrete to the Continuous

Author: Ross G. Pinsky

Publisher: Springer

Published: 2014-08-09

Total Pages: 165

ISBN-13: 3319079654

DOWNLOAD EBOOK

The primary intent of the book is to introduce an array of beautiful problems in a variety of subjects quickly, pithily and completely rigorously to graduate students and advanced undergraduates. The book takes a number of specific problems and solves them, the needed tools developed along the way in the context of the particular problems. It treats a melange of topics from combinatorial probability theory, number theory, random graph theory and combinatorics. The problems in this book involve the asymptotic analysis of a discrete construct, as some natural parameter of the system tends to infinity. Besides bridging discrete mathematics and mathematical analysis, the book makes a modest attempt at bridging disciplines. The problems were selected with an eye toward accessibility to a wide audience, including advanced undergraduate students. The book could be used for a seminar course in which students present the lectures.


Random Walks on Infinite Graphs and Groups

Random Walks on Infinite Graphs and Groups

Author: Wolfgang Woess

Publisher: Cambridge University Press

Published: 2000-02-13

Total Pages: 350

ISBN-13: 0521552923

DOWNLOAD EBOOK

The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics.