Probability Forecasting
Author: Lawrence Ambrose Hughes
Publisher:
Published: 1980
Total Pages: 96
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Lawrence Ambrose Hughes
Publisher:
Published: 1980
Total Pages: 96
ISBN-13:
DOWNLOAD EBOOKAuthor: Alberto Troccoli
Publisher: Springer Science & Business Media
Published: 2008-01-29
Total Pages: 462
ISBN-13: 1402069928
DOWNLOAD EBOOKOriginally formed around a set of lectures presented at a NATO Advanced Study Institute (ASI), this book has grown to become organised and presented rather more as a textbook than as a standard "collection of proceedings". This therefore is the first unified reference ‘textbook’ in seasonal to interannual climate predictions and their practical uses. Written by some of the world’s leading experts, the book covers a rapidly-developing science of prime social concern.
Author: Sebastian Reich
Publisher: Cambridge University Press
Published: 2015-05-14
Total Pages: 308
ISBN-13: 1316299422
DOWNLOAD EBOOKIn this book the authors describe the principles and methods behind probabilistic forecasting and Bayesian data assimilation. Instead of focusing on particular application areas, the authors adopt a general dynamical systems approach, with a profusion of low-dimensional, discrete-time numerical examples designed to build intuition about the subject. Part I explains the mathematical framework of ensemble-based probabilistic forecasting and uncertainty quantification. Part II is devoted to Bayesian filtering algorithms, from classical data assimilation algorithms such as the Kalman filter, variational techniques, and sequential Monte Carlo methods, through to more recent developments such as the ensemble Kalman filter and ensemble transform filters. The McKean approach to sequential filtering in combination with coupling of measures serves as a unifying mathematical framework throughout Part II. Assuming only some basic familiarity with probability, this book is an ideal introduction for graduate students in applied mathematics, computer science, engineering, geoscience and other emerging application areas.
Author: Bovas Abraham
Publisher: John Wiley & Sons
Published: 2009-09-25
Total Pages: 474
ISBN-13: 0470317299
DOWNLOAD EBOOKThe Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This book, it must be said, lives up to the words on its advertising cover: 'Bridging the gap between introductory, descriptive approaches and highly advanced theoretical treatises, it provides a practical, intermediate level discussion of a variety of forecasting tools, and explains how they relate to one another, both in theory and practice.' It does just that!" -Journal of the Royal Statistical Society "A well-written work that deals with statistical methods and models that can be used to produce short-term forecasts, this book has wide-ranging applications. It could be used in the context of a study of regression, forecasting, and time series analysis by PhD students; or to support a concentration in quantitative methods for MBA students; or as a work in applied statistics for advanced undergraduates." -Choice Statistical Methods for Forecasting is a comprehensive, readable treatment of statistical methods and models used to produce short-term forecasts. The interconnections between the forecasting models and methods are thoroughly explained, and the gap between theory and practice is successfully bridged. Special topics are discussed, such as transfer function modeling; Kalman filtering; state space models; Bayesian forecasting; and methods for forecast evaluation, comparison, and control. The book provides time series, autocorrelation, and partial autocorrelation plots, as well as examples and exercises using real data. Statistical Methods for Forecasting serves as an outstanding textbook for advanced undergraduate and graduate courses in statistics, business, engineering, and the social sciences, as well as a working reference for professionals in business, industry, and government.
Author: Stéphane Vannitsem
Publisher: Elsevier
Published: 2018-05-17
Total Pages: 364
ISBN-13: 012812248X
DOWNLOAD EBOOKStatistical Postprocessing of Ensemble Forecasts brings together chapters contributed by international subject-matter experts describing the current state of the art in the statistical postprocessing of ensemble forecasts. The book illustrates the use of these methods in several important applications including weather, hydrological and climate forecasts, and renewable energy forecasting. After an introductory section on ensemble forecasts and prediction systems, the second section of the book is devoted to exposition of the methods available for statistical postprocessing of ensemble forecasts: univariate and multivariate ensemble postprocessing are first reviewed by Wilks (Chapters 3), then Schefzik and Möller (Chapter 4), and the more specialized perspective necessary for postprocessing forecasts for extremes is presented by Friederichs, Wahl, and Buschow (Chapter 5). The second section concludes with a discussion of forecast verification methods devised specifically for evaluation of ensemble forecasts (Chapter 6 by Thorarinsdottir and Schuhen). The third section of this book is devoted to applications of ensemble postprocessing. Practical aspects of ensemble postprocessing are first detailed in Chapter 7 (Hamill), including an extended and illustrative case study. Chapters 8 (Hemri), 9 (Pinson and Messner), and 10 (Van Schaeybroeck and Vannitsem) discuss ensemble postprocessing specifically for hydrological applications, postprocessing in support of renewable energy applications, and postprocessing of long-range forecasts from months to decades. Finally, Chapter 11 (Messner) provides a guide to the ensemble-postprocessing software available in the R programming language, which should greatly help readers implement many of the ideas presented in this book. Edited by three experts with strong and complementary expertise in statistical postprocessing of ensemble forecasts, this book assesses the new and rapidly developing field of ensemble forecast postprocessing as an extension of the use of statistical corrections to traditional deterministic forecasts. Statistical Postprocessing of Ensemble Forecasts is an essential resource for researchers, operational practitioners, and students in weather, seasonal, and climate forecasting, as well as users of such forecasts in fields involving renewable energy, conventional energy, hydrology, environmental engineering, and agriculture. - Consolidates, for the first time, the methodologies and applications of ensemble forecasts in one succinct place - Provides real-world examples of methods used to formulate forecasts - Presents the tools needed to make the best use of multiple model forecasts in a timely and efficient manner
Author: D. Wendt
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 408
ISBN-13: 9401018340
DOWNLOAD EBOOKHuman decision making involves problems which are being studied with increasing interest and sophistication. They range from controversial political decisions via individual consumer decisions to such simple tasks as signal discriminations. Although it would seem that decisions have to do with choices among available actions of any kind, there is general agreement that decision making research should pertain to choice prob lems which cannot be solved without a predecisional stage of finding choice alternatives, weighing evidence, and judging values. The ultimate objective of scientific research on decision making is two-fold: (a) to develop a theoretically sound technology for the optimal solution of decision problems, and (b) to formulate a descriptive theory of human decision making. The latter may, in tum, protect decision makers from being caught in the traps of their own limitations and biases. Recently, in decision making research the strong emphasis on well defined laboratory tasks is decreasing in favour of more realistic studies in various practical settings. This may well have been caused by a growing awareness of the fact that decision-behaviour is strongly determined by situational factors, which makes it necessary to look into processes of interaction between the decision maker and the relevant task environ ment. Almost inevitably there is a parallel shift of interest towards problems of utility measurement and the evaluation of consequences.
Author: Roman Krzysztofowicz
Publisher: John Wiley & Sons
Published: 2025-02-03
Total Pages: 581
ISBN-13: 139422186X
DOWNLOAD EBOOKAccount for uncertainties and optimize decision-making with this thorough exposition Decision theory is a body of thought and research seeking to apply a mathematical-logical framework to assessing probability and optimizing decision-making. It has developed robust tools for addressing all major challenges to decision making. Yet the number of variables and uncertainties affecting each decision outcome, many of them beyond the decider's control, mean that decision-making is far from a “solved problem”. The tools created by decision theory remain to be refined and applied to decisions in which uncertainties are prominent. Probabilistic Forecasts and Optimal Decisions introduces a theoretically-grounded methodology for optimizing decision-making under conditions of uncertainty. Beginning with an overview of the basic elements of probability theory and methods for modeling continuous variates, it proceeds to survey the mathematics of both continuous and discrete models, supporting each with key examples. The result is a crucial window into the complex but enormously rewarding world of decision theory. Probabilistic Forecasts and Optimal Decisions readers will also find: Extended case studies supported with real-world data Mini-projects running through multiple chapters to illustrate different stages of the decision-making process End of chapter exercises designed to facilitate student learning Probabilistic Forecasts and Optimal Decisions is ideal for advanced undergraduate and graduate students in the sciences and engineering, as well as predictive analytics and decision analytics professionals.
Author: Glenn Shafer
Publisher: John Wiley & Sons
Published: 2019-05-08
Total Pages: 554
ISBN-13: 1118548027
DOWNLOAD EBOOKGame-theoretic probability and finance come of age Glenn Shafer and Vladimir Vovk’s Probability and Finance, published in 2001, showed that perfect-information games can be used to define mathematical probability. Based on fifteen years of further research, Game-Theoretic Foundations for Probability and Finance presents a mature view of the foundational role game theory can play. Its account of probability theory opens the way to new methods of prediction and testing and makes many statistical methods more transparent and widely usable. Its contributions to finance theory include purely game-theoretic accounts of Ito’s stochastic calculus, the capital asset pricing model, the equity premium, and portfolio theory. Game-Theoretic Foundations for Probability and Finance is a book of research. It is also a teaching resource. Each chapter is supplemented with carefully designed exercises and notes relating the new theory to its historical context. Praise from early readers “Ever since Kolmogorov's Grundbegriffe, the standard mathematical treatment of probability theory has been measure-theoretic. In this ground-breaking work, Shafer and Vovk give a game-theoretic foundation instead. While being just as rigorous, the game-theoretic approach allows for vast and useful generalizations of classical measure-theoretic results, while also giving rise to new, radical ideas for prediction, statistics and mathematical finance without stochastic assumptions. The authors set out their theory in great detail, resulting in what is definitely one of the most important books on the foundations of probability to have appeared in the last few decades.” – Peter Grünwald, CWI and University of Leiden “Shafer and Vovk have thoroughly re-written their 2001 book on the game-theoretic foundations for probability and for finance. They have included an account of the tremendous growth that has occurred since, in the game-theoretic and pathwise approaches to stochastic analysis and in their applications to continuous-time finance. This new book will undoubtedly spur a better understanding of the foundations of these very important fields, and we should all be grateful to its authors.” – Ioannis Karatzas, Columbia University
Author: G. Elliott
Publisher: Elsevier
Published: 2006-07-14
Total Pages: 1071
ISBN-13: 0444513957
DOWNLOAD EBOOKSection headings in this handbook include: 'Forecasting Methodology; 'Forecasting Models'; 'Forecasting with Different Data Structures'; and 'Applications of Forecasting Methods.'.
Author: Allan Murphy
Publisher: CRC Press
Published: 2019-07-11
Total Pages: 560
ISBN-13: 1000236323
DOWNLOAD EBOOKMethodology drawn from the fields of probability. statistics and decision making plays an increasingly important role in the atmosphericsciences. both in basic and applied research and in experimental and operational studies. Applications of such methodology can be found in almost every facet of the discipline. from the most theoretical and global (e.g., atmospheric predictability. global climate modeling) to the most practical and local (e.g., crop-weather modeling forecast evaluation). Almost every issue of the multitude of journals published by the atmospheric sciences community now contain some or more papers involving applications of concepts and/or methodology from the fields of probability and statistics. Despite the increasingly pervasive nature of such applications. very few book length treatments of probabilistic and statistical topics of particular interest to atmospheric scientists have appeared (especially inEnglish) since the publication of the pioneering works of Brooks andCarruthers (Handbook of Statistical Methods in Meteorology) in 1953 and Panofsky and Brier-(some Applications of)statistics to Meteor) in 1958. As a result. many relatively recent developments in probability and statistics are not well known to atmospheric scientists and recent work in active areas of meteorological research involving significant applications of probabilistic and statistical methods are not familiar to the meteorological community as a whole.