Probability in Banach Spaces

Probability in Banach Spaces

Author: Michel Ledoux

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 493

ISBN-13: 3642202128

DOWNLOAD EBOOK

Isoperimetric, measure concentration and random process techniques appear at the basis of the modern understanding of Probability in Banach spaces. Based on these tools, the book presents a complete treatment of the main aspects of Probability in Banach spaces (integrability and limit theorems for vector valued random variables, boundedness and continuity of random processes) and of some of their links to Geometry of Banach spaces (via the type and cotype properties). Its purpose is to present some of the main aspects of this theory, from the foundations to the most important achievements. The main features of the investigation are the systematic use of isoperimetry and concentration of measure and abstract random process techniques (entropy and majorizing measures). Examples of these probabilistic tools and ideas to classical Banach space theory are further developed.


Probability Distributions on Banach Spaces

Probability Distributions on Banach Spaces

Author: N Vakhania

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 507

ISBN-13: 940093873X

DOWNLOAD EBOOK

Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.


Analysis in Banach Spaces

Analysis in Banach Spaces

Author: Tuomas Hytönen

Publisher: Springer

Published: 2018-02-14

Total Pages: 630

ISBN-13: 3319698087

DOWNLOAD EBOOK

This second volume of Analysis in Banach Spaces, Probabilistic Methods and Operator Theory, is the successor to Volume I, Martingales and Littlewood-Paley Theory. It presents a thorough study of the fundamental randomisation techniques and the operator-theoretic aspects of the theory. The first two chapters address the relevant classical background from the theory of Banach spaces, including notions like type, cotype, K-convexity and contraction principles. In turn, the next two chapters provide a detailed treatment of the theory of R-boundedness and Banach space valued square functions developed over the last 20 years. In the last chapter, this content is applied to develop the holomorphic functional calculus of sectorial and bi-sectorial operators in Banach spaces. Given its breadth of coverage, this book will be an invaluable reference to graduate students and researchers interested in functional analysis, harmonic analysis, spectral theory, stochastic analysis, and the operator-theoretic approach to deterministic and stochastic evolution equations.


Banach Space Theory

Banach Space Theory

Author: Marián Fabian

Publisher: Springer Science & Business Media

Published: 2011-02-04

Total Pages: 820

ISBN-13: 1441975152

DOWNLOAD EBOOK

Banach spaces provide a framework for linear and nonlinear functional analysis, operator theory, abstract analysis, probability, optimization and other branches of mathematics. This book introduces the reader to linear functional analysis and to related parts of infinite-dimensional Banach space theory. Key Features: - Develops classical theory, including weak topologies, locally convex space, Schauder bases and compact operator theory - Covers Radon-Nikodým property, finite-dimensional spaces and local theory on tensor products - Contains sections on uniform homeomorphisms and non-linear theory, Rosenthal's L1 theorem, fixed points, and more - Includes information about further topics and directions of research and some open problems at the end of each chapter - Provides numerous exercises for practice The text is suitable for graduate courses or for independent study. Prerequisites include basic courses in calculus and linear. Researchers in functional analysis will also benefit for this book as it can serve as a reference book.


Martingales in Banach Spaces

Martingales in Banach Spaces

Author: Gilles Pisier

Publisher: Cambridge University Press

Published: 2016-06-06

Total Pages: 591

ISBN-13: 1107137241

DOWNLOAD EBOOK

This book focuses on applications of martingales to the geometry of Banach spaces, and is accessible to graduate students.


Handbook of the Geometry of Banach Spaces

Handbook of the Geometry of Banach Spaces

Author:

Publisher: Elsevier

Published: 2001-08-15

Total Pages: 1017

ISBN-13: 0080532802

DOWNLOAD EBOOK

The Handbook presents an overview of most aspects of modernBanach space theory and its applications. The up-to-date surveys, authored by leading research workers in the area, are written to be accessible to a wide audience. In addition to presenting the state of the art of Banach space theory, the surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory, and partial differential equations. The Handbook begins with a chapter on basic concepts in Banachspace theory which contains all the background needed for reading any other chapter in the Handbook. Each of the twenty one articles in this volume after the basic concepts chapter is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods, and open problems in its specific direction. Most have an extensive bibliography. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. As well as being valuable to experienced researchers in Banach space theory, the Handbook should be an outstanding source for inspiration and information to graduate students and beginning researchers. The Handbook will be useful for mathematicians who want to get an idea of the various developments in Banach space theory.


Hilbert Space Methods in Probability and Statistical Inference

Hilbert Space Methods in Probability and Statistical Inference

Author: Christopher G. Small

Publisher: John Wiley & Sons

Published: 2011-09-15

Total Pages: 268

ISBN-13: 1118165535

DOWNLOAD EBOOK

Explains how Hilbert space techniques cross the boundaries into the foundations of probability and statistics. Focuses on the theory of martingales stochastic integration, interpolation and density estimation. Includes a copious amount of problems and examples.


Introduction to Banach Spaces: Analysis and Probability:

Introduction to Banach Spaces: Analysis and Probability:

Author: Daniel Li

Publisher: Cambridge University Press

Published: 2017-11-02

Total Pages: 406

ISBN-13: 1108300081

DOWNLOAD EBOOK

This two-volume text provides a complete overview of the theory of Banach spaces, emphasising its interplay with classical and harmonic analysis (particularly Sidon sets) and probability. The authors give a full exposition of all results, as well as numerous exercises and comments to complement the text and aid graduate students in functional analysis. The book will also be an invaluable reference volume for researchers in analysis. Volume 1 covers the basics of Banach space theory, operatory theory in Banach spaces, harmonic analysis and probability. The authors also provide an annex devoted to compact Abelian groups. Volume 2 focuses on applications of the tools presented in the first volume, including Dvoretzky's theorem, spaces without the approximation property, Gaussian processes, and more. Four leading experts also provide surveys outlining major developments in the field since the publication of the original French edition.


An Introduction to Banach Space Theory

An Introduction to Banach Space Theory

Author: Robert E. Megginson

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 613

ISBN-13: 1461206030

DOWNLOAD EBOOK

Preparing students for further study of both the classical works and current research, this is an accessible text for students who have had a course in real and complex analysis and understand the basic properties of L p spaces. It is sprinkled liberally with examples, historical notes, citations, and original sources, and over 450 exercises provide practice in the use of the results developed in the text through supplementary examples and counterexamples.