Probabilistic Methods in Fatigue and Fracture

Probabilistic Methods in Fatigue and Fracture

Author: Alfred B.O. Soboyejo

Publisher: Trans Tech Publications Ltd

Published: 2001-02-15

Total Pages: 252

ISBN-13: 3035703930

DOWNLOAD EBOOK

Volume is indexed by Thomson Reuters CPCI-S (WoS). The present book presents an in-depth report on probabilistic methods used to study fatigue and fracture of engineering materials. It is divided into three sections: fatigue; reliability modeling; and statistical methods. The book will serve as a useful new reference on probabilistic methods in fatigue and fracture. It should be of interest to researchers and engineers in industry and academia.


Probabilistic Methods in the Mechanics of Solids and Structures

Probabilistic Methods in the Mechanics of Solids and Structures

Author: S. Eggwertz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 600

ISBN-13: 3642824196

DOWNLOAD EBOOK

The IUTAM Symposium on Probabilistic Methods in the Mechanics of Solids and Structures, dedicated to the memory of Waloddi Weibull, was held in Stockholm, Sweden, June 19-21, 1984, on the initiative of the Swedish National Committee for Mech anics and the Aeronautical Research Institute of Sweden, FFA. The purpose of the symposium was to bring together mathema ticians that develop the theory of stochastic processes and methods for reliability analysis, with engineers that apply these theories and methods to model loads, strengths and structures for the advancement of structural safety. Waloddi Weibull was a pioneer in this field with his many publi cations from the thirties until his death in 1979. He also took an active part in the formation of the International Union of Theoretical and Applied Mechanics during the forties, and subsequently initiated foundation of the Swedish National Committee for Mechanics, through which Sweden joined IUTAM as a member. 116 participants from 21 countries attended the symposium, and 55 invited papers were presented in 7 scientific sessions.


Probabilistic Methods for Structural Design

Probabilistic Methods for Structural Design

Author: Carlos Guedes Soares

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 411

ISBN-13: 940115614X

DOWNLOAD EBOOK

This book contains contributions from various authors on different important topics related with probabilistic methods used for the design of structures. Initially several of the papers were prepared for advanced courses on structural reliability or on probabilistic methods for structural design. These courses have been held in different countries and have been given by different groups of lecturers. They were aimed at engineers and researchers who already had some exposure to structural reliability methods and thus they presented overviews of the work in the various topics. The book includes a selection of those contributions, which can be of support for future courses or for engineers and researchers that want to have an update on specific topics. It is considered a complement to the existing textbooks on structural reliability, which normally ensure the coverage of the basic topics but then are not extensive enough to cover some more specialised aspects. In addition to the contributions drawn from those lectures there are several papers that have been prepared specifically for this book, aiming at complementing the others in providing an overall account of the recent advances in the field. It is with sadness that in the meanwhile we have seen the disappearance of two of the contributors to the book and, in fact two of the early contributors to this field.


Probabilistic Structural Mechanics Handbook

Probabilistic Structural Mechanics Handbook

Author: C.R. Sundararajan

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 756

ISBN-13: 1461517710

DOWNLOAD EBOOK

The need for a comprehensive book on probabilistic structural mechanics that brings together the many analytical and computational methods developed over the years and their applications in a wide spectrum of industries-from residential buildings to nuclear power plants, from bridges to pressure vessels, from steel structures to ceramic structures-became evident from the many discussions the editor had with practising engineers, researchers and professors. Because no single individual has the expertise to write a book with such a di.verse scope, a group of 39 authors from universities, research laboratories, and industries from six countries in three continents was invited to write 30 chapters covering the various aspects of probabilistic structural mechanics. The editor and the authors believe that this handbook will serve as a reference text to practicing engineers, teachers, students and researchers. It may also be used as a textbook for graduate-level courses in probabilistic structural mechanics. The editor wishes to thank the chapter authors for their contributions. This handbook would not have been a reality without their collaboration.


A Unified Statistical Methodology for Modeling Fatigue Damage

A Unified Statistical Methodology for Modeling Fatigue Damage

Author: Enrique Castillo

Publisher: Springer Science & Business Media

Published: 2009-02-27

Total Pages: 232

ISBN-13: 1402091826

DOWNLOAD EBOOK

This book is an attempt to provide a uni?ed methodology to derive models for fatigue life. This includes S-N, ?-N and crack propagation models. This is not a conventional book aimed at describing the fatigue fundamentals, but rather a book in which the basic models of the three main fatigue approaches, the stress-based, the strain-based and the fracture mechanics approaches, are contemplated from a novel and integrated point of view. On the other hand, as an alternative to the preferential attention paid to deterministic models based on the physical, phenomenological and empirical description of fatigue, their probabilistic nature is emphasized in this book, in which stochastic fatigue and crack growth models are presented. This book is the result of a long period of close collaborationbetween its two authors who, although of di?erent backgrounds, mathematical and mechanical, both have a strong sense of engineering with respect to the fatigue problem. When the authors of this book ?rst approached the fatigue ?eld in 1982 (twenty six years ago), they found the following scenario: 1. Linear, bilinear or trilinear models were frequently proposed by relevant laboratoriesandacademiccenterstoreproducetheW ̈ ohler?eld. Thiswas the case of well known institutions, which justi?ed these models based on clientrequirementsorpreferences. Thisledtotheinclusionofsuchmodels and methods as, for example, the up-and-down, in standards and o?cial practical directives (ASTM, Euronorm, etc.), which have proved to be unfortunate.


Risk-Based Engineering

Risk-Based Engineering

Author: Prabhakar V. Varde

Publisher: Springer

Published: 2018-04-19

Total Pages: 579

ISBN-13: 9811300909

DOWNLOAD EBOOK

The book comprehensively covers the various aspects of risk modeling and analysis in technological contexts. It pursues a systems approach to modeling risk and reliability concerns in engineering, and covers the key concepts of risk analysis and mathematical tools used to assess and account for risk in engineering problems. The relevance of incorporating risk-based structures in design and operations is also stressed, with special emphasis on the human factor and behavioral risks. The book uses the nuclear plant, an extremely complex and high-precision engineering environment, as an example to develop the concepts discussed. The core mechanical, electronic and physical aspects of such a complex system offer an excellent platform for analyzing and creating risk-based models. The book also provides real-time case studies in a separate section to demonstrate the use of this approach. There are many limitations when it comes to applications of risk-based approaches to engineering problems. The book is structured and written in a way that addresses these key gap areas to help optimize the overall methodology. This book serves as a textbook for graduate and advanced undergraduate courses on risk and reliability in engineering. It can also be used outside the classroom for professional development courses aimed at practicing engineers or as an introduction to risk-based engineering for professionals, researchers, and students interested in the field.


Fatigue Testing and Analysis

Fatigue Testing and Analysis

Author: Yung-Li Lee

Publisher: Elsevier

Published: 2011-04-18

Total Pages: 417

ISBN-13: 0080477690

DOWNLOAD EBOOK

Fatigue Testing and Analysis: Theory and Practice presents the latest, proven techniques for fatigue data acquisition, data analysis, and test planning and practice. More specifically, it covers the most comprehensive methods to capture the component load, to characterize the scatter of product fatigue resistance and loading, to perform the fatigue damage assessment of a product, and to develop an accelerated life test plan for reliability target demonstration. This book is most useful for test and design engineers in the ground vehicle industry. Fatigue Testing and Analysis introduces the methods to account for variability of loads and statistical fatigue properties that are useful for further probabilistic fatigue analysis. The text incorporates and demonstrates approaches that account for randomness of loading and materials, and covers the applications and demonstrations of both linear and double-linear damage rules. The reader will benefit from summaries of load transducer designs and data acquisition techniques, applications of both linear and non-linear damage rules and methods, and techniques to determine the statistical fatigue properties for the nominal stress-life and the local strain-life methods. - Covers the useful techniques for component load measurement and data acquisition, fatigue properties determination, fatigue analysis, and accelerated life test criteria development, and, most importantly, test plans for reliability demonstrations - Written from a practical point of view, based on the authors' industrial and academic experience in automotive engineering design - Extensive practical examples are used to illustrate the main concepts in all chapters


Probabilistic Aspects of Life Prediction

Probabilistic Aspects of Life Prediction

Author: W. Steven Johnson

Publisher: ASTM International

Published: 2004

Total Pages: 292

ISBN-13: 9780803134782

DOWNLOAD EBOOK

As fatigue and fracture mechanics approaches are used more often for determining the useful life and/or inspection intervals for complex structures, realization sets-in that all factors are not well known or characterized. Indeed, inherent scatter exists in initial material quality and in material performance. Furthermore, projections of component usage in determination of applied stresses are inexact at best and are subject to much discrepancy between projected and actual usage. Even the models for predicting life contain inherent sources of error based on assumptions and/or empirically fitted parameters. All of these factors need to be accounted for to determine a distribution of potential lives based on combination of the aforementioned variables, as well as other factors. The purpose of this symposium was to create a forum for assessment of the state-of-the-art in incorporating these uncertainties and inherent scatter into systematic probabilistic methods for conducting life assessment.