"This book delves into the pressing issues related to privacy and secured data storage in cloud computing. It explores the threats and vulnerabilities that cloud computing faces and discuss various techniques and strategies that can be used to safeguard data in the cloud"--
With the immense amount of data that is now available online, security concerns have been an issue from the start, and have grown as new technologies are increasingly integrated in data collection, storage, and transmission. Online cyber threats, cyber terrorism, hacking, and other cybercrimes have begun to take advantage of this information that can be easily accessed if not properly handled. New privacy and security measures have been developed to address this cause for concern and have become an essential area of research within the past few years and into the foreseeable future. The ways in which data is secured and privatized should be discussed in terms of the technologies being used, the methods and models for security that have been developed, and the ways in which risks can be detected, analyzed, and mitigated. The Research Anthology on Privatizing and Securing Data reveals the latest tools and technologies for privatizing and securing data across different technologies and industries. It takes a deeper dive into both risk detection and mitigation, including an analysis of cybercrimes and cyber threats, along with a sharper focus on the technologies and methods being actively implemented and utilized to secure data online. Highlighted topics include information governance and privacy, cybersecurity, data protection, challenges in big data, security threats, and more. This book is essential for data analysts, cybersecurity professionals, data scientists, security analysts, IT specialists, practitioners, researchers, academicians, and students interested in the latest trends and technologies for privatizing and securing data.
As cloud services become increasingly popular, safeguarding sensitive data has become paramount. Privacy Preservation and Secured Data Storage in Cloud Computing is a comprehensive book that addresses the critical concerns surrounding privacy and security in the realm of cloud computing. Beginning with an introduction to cloud computing and its underlying technologies, the book explores various models of cloud service delivery. It then delves into the challenges and risks associated with storing and processing data in the cloud, including data breaches, insider threats, and third-party access. The book thoroughly examines techniques and tools to enhance privacy and security in the cloud, covering encryption, access control, data anonymization, and other measures to mitigate risks. Additionally, it explores emerging trends and opportunities in cloud security, such as blockchain-based solutions, homomorphic encryption, and other cutting-edge technologies poised to transform data privacy and security. This invaluable resource offers practical advice and in-depth analysis for cloud service providers, IT professionals, researchers, and students seeking to understand best practices for securing data in the cloud.
The book compiles technologies for enhancing and provisioning security, privacy and trust in cloud systems based on Quality of Service requirements. It is a timely contribution to a field that is gaining considerable research interest, momentum, and provides a comprehensive coverage of technologies related to cloud security, privacy and trust. In particular, the book includes - Cloud security fundamentals and related technologies to-date, with a comprehensive coverage of evolution, current landscape, and future roadmap. - A smooth organization with introductory, advanced and specialist content, i.e. from basics of security, privacy and trust in cloud systems, to advanced cartographic techniques, case studies covering both social and technological aspects, and advanced platforms. - Case studies written by professionals and/or industrial researchers. - Inclusion of a section on Cloud security and eGovernance tutorial that can be used for knowledge transfer and teaching purpose. - Identification of open research issues to help practitioners and researchers. The book is a timely topic for readers, including practicing engineers and academics, in the domains related to the engineering, science, and art of building networks and networked applications. Specifically, upon reading this book, audiences will perceive the following benefits: 1. Learn the state-of-the-art in research and development on cloud security, privacy and trust. 2. Obtain a future roadmap by learning open research issues. 3. Gather the background knowledge to tackle key problems, whose solutions will enhance the evolution of next-generation secure cloud systems.
As industries are rapidly being digitalized and information is being more heavily stored and transmitted online, the security of information has become a top priority in securing the use of online networks as a safe and effective platform. With the vast and diverse potential of artificial intelligence (AI) applications, it has become easier than ever to identify cyber vulnerabilities, potential threats, and the identification of solutions to these unique problems. The latest tools and technologies for AI applications have untapped potential that conventional systems and human security systems cannot meet, leading AI to be a frontrunner in the fight against malware, cyber-attacks, and various security issues. However, even with the tremendous progress AI has made within the sphere of security, it’s important to understand the impacts, implications, and critical issues and challenges of AI applications along with the many benefits and emerging trends in this essential field of security-based research. Research Anthology on Artificial Intelligence Applications in Security seeks to address the fundamental advancements and technologies being used in AI applications for the security of digital data and information. The included chapters cover a wide range of topics related to AI in security stemming from the development and design of these applications, the latest tools and technologies, as well as the utilization of AI and what challenges and impacts have been discovered along the way. This resource work is a critical exploration of the latest research on security and an overview of how AI has impacted the field and will continue to advance as an essential tool for security, safety, and privacy online. This book is ideally intended for cyber security analysts, computer engineers, IT specialists, practitioners, stakeholders, researchers, academicians, and students interested in AI applications in the realm of security research.
Cloud computing is becoming the next revolution in the IT industry; providing central storage for internet data and services that have the potential to bring data transmission performance, security and privacy, data deluge, and inefficient architecture to the next level. Enabling the New Era of Cloud Computing: Data Security, Transfer, and Management discusses cloud computing as an emerging technology and its critical role in the IT industry upgrade and economic development in the future. This book is an essential resource for business decision makers, technology investors, architects and engineers, and cloud consumers interested in the cloud computing future.
Keep sensitive user data safe and secure without sacrificing the performance and accuracy of your machine learning models. In Privacy Preserving Machine Learning, you will learn: Privacy considerations in machine learning Differential privacy techniques for machine learning Privacy-preserving synthetic data generation Privacy-enhancing technologies for data mining and database applications Compressive privacy for machine learning Privacy-Preserving Machine Learning is a comprehensive guide to avoiding data breaches in your machine learning projects. You’ll get to grips with modern privacy-enhancing techniques such as differential privacy, compressive privacy, and synthetic data generation. Based on years of DARPA-funded cybersecurity research, ML engineers of all skill levels will benefit from incorporating these privacy-preserving practices into their model development. By the time you’re done reading, you’ll be able to create machine learning systems that preserve user privacy without sacrificing data quality and model performance. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning applications need massive amounts of data. It’s up to you to keep the sensitive information in those data sets private and secure. Privacy preservation happens at every point in the ML process, from data collection and ingestion to model development and deployment. This practical book teaches you the skills you’ll need to secure your data pipelines end to end. About the Book Privacy-Preserving Machine Learning explores privacy preservation techniques through real-world use cases in facial recognition, cloud data storage, and more. You’ll learn about practical implementations you can deploy now, future privacy challenges, and how to adapt existing technologies to your needs. Your new skills build towards a complete security data platform project you’ll develop in the final chapter. What’s Inside Differential and compressive privacy techniques Privacy for frequency or mean estimation, naive Bayes classifier, and deep learning Privacy-preserving synthetic data generation Enhanced privacy for data mining and database applications About the Reader For machine learning engineers and developers. Examples in Python and Java. About the Author J. Morris Chang is a professor at the University of South Florida. His research projects have been funded by DARPA and the DoD. Di Zhuang is a security engineer at Snap Inc. Dumindu Samaraweera is an assistant research professor at the University of South Florida. The technical editor for this book, Wilko Henecka, is a senior software engineer at Ambiata where he builds privacy-preserving software. Table of Contents PART 1 - BASICS OF PRIVACY-PRESERVING MACHINE LEARNING WITH DIFFERENTIAL PRIVACY 1 Privacy considerations in machine learning 2 Differential privacy for machine learning 3 Advanced concepts of differential privacy for machine learning PART 2 - LOCAL DIFFERENTIAL PRIVACY AND SYNTHETIC DATA GENERATION 4 Local differential privacy for machine learning 5 Advanced LDP mechanisms for machine learning 6 Privacy-preserving synthetic data generation PART 3 - BUILDING PRIVACY-ASSURED MACHINE LEARNING APPLICATIONS 7 Privacy-preserving data mining techniques 8 Privacy-preserving data management and operations 9 Compressive privacy for machine learning 10 Putting it all together: Designing a privacy-enhanced platform (DataHub)
Distributed systems intertwine with our everyday lives. The benefits and current shortcomings of the underpinning technologies are experienced by a wide range of people and their smart devices. With the rise of large-scale IoT and similar distributed systems, cloud bursting technologies, and partial outsourcing solutions, private entities are encouraged to increase their efficiency and offer unparalleled availability and reliability to their users. The Research Anthology on Architectures, Frameworks, and Integration Strategies for Distributed and Cloud Computing is a vital reference source that provides valuable insight into current and emergent research occurring within the field of distributed computing. It also presents architectures and service frameworks to achieve highly integrated distributed systems and solutions to integration and efficient management challenges faced by current and future distributed systems. Highlighting a range of topics such as data sharing, wireless sensor networks, and scalability, this multi-volume book is ideally designed for system administrators, integrators, designers, developers, researchers, academicians, and students.
This book provides the state-of-the-art development on security and privacy for fog/edge computing, together with their system architectural support and applications. This book is organized into five parts with a total of 15 chapters. Each area corresponds to an important snapshot. The first part of this book presents an overview of fog/edge computing, focusing on its relationship with cloud technology and the future with the use of 5G communication. Several applications of edge computing are discussed. The second part of this book considers several security issues in fog/edge computing, including the secure storage and search services, collaborative intrusion detection method on IoT-fog computing, and the feasibility of deploying Byzantine agreement protocols in untrusted environments. The third part of this book studies the privacy issues in fog/edge computing. It first investigates the unique privacy challenges in fog/edge computing, and then discusses a privacy-preserving framework for the edge-based video analysis, a popular machine learning application on fog/edge. This book also covers the security architectural design of fog/edge computing, including a comprehensive overview of vulnerabilities in fog/edge computing within multiple architectural levels, the security and intelligent management, the implementation of network-function-virtualization-enabled multicasting in part four. It explains how to use the blockchain to realize security services. The last part of this book surveys applications of fog/edge computing, including the fog/edge computing in Industrial IoT, edge-based augmented reality, data streaming in fog/edge computing, and the blockchain-based application for edge-IoT. This book is designed for academics, researchers and government officials, working in the field of fog/edge computing and cloud computing. Practitioners, and business organizations (e.g., executives, system designers, and marketing professionals), who conduct teaching, research, decision making, and designing fog/edge technology will also benefit from this book The content of this book will be particularly useful for advanced-level students studying computer science, computer technology, and information systems, but also applies to students in business, education, and economics, who would benefit from the information, models, and case studies therein.
This book includes high-quality research papers presented at 3rd International Conference on Sustainable Communication Networks and Applications (ICSCN 2021), which is held at Surya Engineering College (SEC), Erode, India, during 29–30 July 2021. This book includes novel and state-of-the-art research discussions that articulate and report all research aspects, including theoretical and experimental prototypes and applications that incorporate sustainability into emerging applications. The book discusses and articulates emerging challenges in significantly reducing the energy consumption of communication systems and also explains development of a sustainable and energy-efficient mobile and wireless communication network. It includes best selected high-quality conference papers in different fields such as Internet of Things, cloud computing, data mining, artificial intelligence, machine learning, autonomous systems, deep learning, neural networks, renewable energy sources, sustainable wireless communication networks, QoS, network sustainability, and many other related areas.