A collection of 81 full-length, peer-reviewed technical papers that covers such topics as: Bio-inspired Smart Materials and Structures; Enabling Technologies and Integrated System Design; Multifunctional Materials; and, Structural Health Monitoring/NDE.
This new edition of our 2016 book provides insight into designing intelligent materials and structures for special application in engineering. Literature is updated throughout and a new chapter on optics fibers has been added. The book discusses simulation and experimental determination of physical material properties, such as piezoelectric effects, shape memory, electro-rheology, and distributed control for vibrations minimization.
Fuzzy control theory is an emerging area of research. At the core of many engineering problems is the problem of control of different systems. These systems range all the way from classical inverted pendulum to auto-focusing system of a digital camera. Fuzzy control systems have demonstrated their enhanced performance in all these areas. Progress in this domain is very fast and there was critical need of a book that captures all the recent advances both in theory and in applications. Serving this purpose, this book is conceived. This book will provide you a very clear picture of current status of fuzzy control research. This book is intended for researchers, engineers, and postgraduate students specializing in fuzzy systems, control engineering, and robotics.
Autonomous sensors transmit data and power their electronics without using cables. They can be found in e.g. wireless sensor networks (WSNs) or remote acquisition systems. Although primary batteries provide a simple design for powering autonomous sensors, they present several limitations such as limited capacity and power density, and difficulty in predicting their condition and state of charge. An alternative is to extract energy from the ambient (energy harvesting). However, the reduced dimensions of most autonomous sensors lead to a low level of available power from the energy transducer. Thus, efficient methods and circuits to manage and gather the energy are a must. An integral approach for powering autonomous sensors by considering both primary batteries and energy harvesters is presented. Two rather different forms of energy harvesting are also dealt with: optical (or solar) and radiofrequency (RF). Optical energy provides high energy density, especially outdoors, whereas RF remote powering is possibly the most feasible option for autonomous sensors embedded into the soil or within structures. Throughout different chapters, devices such as primary and secondary batteries, supercapacitors, and energy transducers are extensively reviewed. Then, circuits and methods found in the literature used to efficiently extract and gather the energy are presented. Finally, new proposals based on the authors’ own research are analyzed and tested. Every chapter is written to be rather independent, with each incorporating the relevant literature references. Powering Autonomous Sensors is intended for a wide audience working on or interested in the powering of autonomous sensors. Researchers and engineers can find a broad introduction to basic topics in this interesting and emerging area as well as further insights on the topics of solar and RF harvesting and of circuits and methods to maximize the power extracted from energy transducers.
Marine propulsors are key components of the many thousands of ships and boats operating in oceans, lakes, and rivers around the world. The performance of propulsors are important for the environmental impact of ships, underwater noise impact on aquatic fauna, and crew and passenger comfort and safety. This book presents nineteen papers devoted to the hydrodynamics of different types of marine propulsors (conventional propellers, thrusters, and novel solutions). Most of the papers are extended papers from the sixth International Symposium on Marine Propulsors (SMP 2019). Several of the papers deal with cavitation, vortices, and energy saving devices. The papers present high-quality research performed using Computational Fluid Dynamics (CFD) and Experimental Fluid Dynamics (EFD) as well Artificial Intelligence (AI).
Shape Memory Alloy Engineering introduces materials, mechanical, and aerospace engineers to shape memory alloys (SMAs), providing a unique perspective that combines fundamental theory with new approaches to design and modeling of actual SMAs as compact and inexpensive actuators for use in aerospace and other applications. With this book readers will gain an understanding of the intrinsic properties of SMAs and their characteristic state diagrams, allowing them to design innovative compact actuation systems for applications from aerospace and aeronautics to ships, cars, and trucks. The book realistically discusses both the potential of these fascinating materials as well as their limitations in everyday life, and how to overcome some of those limitations in order to achieve proper design of useful SMA mechanisms. Discusses material characterization processes and results for a number of newer SMAs Incorporates numerical (FE) simulation and integration procedures into commercial codes (Msc/Nastran, Abaqus, and others) Provides detailed examples on design procedures and optimization of SMA-based actuation systems for real cases, from specs to verification lab tests on physical demonstrators One of the few SMA books to include design and set-up of demonstrator characterization tests and correlation with numerical models
Adaptive structures have the ability to adapt, evolve or change their properties or behaviour in response to the environment around them. The analysis and design of adaptive structures requires a highly multi-disciplinary approach which includes elements of structures, materials, dynamics, control, design and inspiration taken from biological systems. Development of adaptive structures has been taking place in a wide range of industrial applications, but is particularly advanced in the aerospace and space technology sector with morphing wings, deployable space structures; piezoelectric devices and vibration control of tall buildings. Bringing together some of the foremost world experts in adaptive structures, this unique text: includes discussions of the application of adaptive structures in the aerospace, military, civil engineering structures, automotive and MEMS. presents the impact of biological inspiration in designing adaptive structures, particularly the use of hierarchy in nature, which typically induces multi-functional behavior. sets the agenda for future research in adaptive structures in one distinctive single volume. Adaptive Structures: Engineering Applications is essential reading for engineers and scientists working in the fields of intelligent materials, structural vibration, control and related smart technologies. It will also be of interest to senior undergraduate and postgraduate research students as well as design engineers working in the aerospace, mechanical, electrical and civil engineering sectors.
The European DayWater project has developed a prototype of an Adaptive Decision Support System (ADSS) related to urban stormwater pollution source control. The DayWater ADSS greatly facilitates decision-making for stormwater source control, which is currently impeded by the large number of stakeholders involved and by the necessary multidisciplinary knowledge. This book presents the results of this project, providing new insights into both technical and management issues. The main objectives of its technical chapters are pollution source control modelling, risk and impact assessment, and evaluation and comparison of best management practices. It also covers management aspects, such as the analysis of the decision-making processes in stormwater source control, at a European scale, and stormwater management strategies in general. The combination of scientific-technical and socio-managerial knowledge, with the strong cooperation of numerous end-users, reflects the innovative character of this book which includes actual applications of the ADSS prototype in significant case studies. DayWater: an Adaptive Decision Support System for Urban Stormwater Management contains 26 chapters collectively prepared by DayWater scientific partners and end-users associated with this European Research and Development project. It includes: A general presentation of the DayWater Adaptive Decision Support System (ADSS) structure and operation modes A detailed description of the major components of this ADSS prototype The assessment of its components in significant case studies in France, Germany and Sweden The proceedings of the International Conference on Decision Support Systems for Integrated Urban Water Management, held in Paris on 3-4 November 2005. The book presents the ADSS prototype including a combination of freely accessible on-line databases, guidance documents, “road maps” and modelling or multi-criteria analysis tools. As demonstrated in several significant case studies the challenge for stormwater managers is to make the benefits of urban stormwater management visible to society, resulting in active co-operation of a diversity of stakeholders. Only then, will sustainable management succeed. DayWater: an Adaptive Decision Support System for Urban Stormwater Management advances this cause of sustainable urban management through Urban stormwater management, and makes achievable (by means of risk and vulnerability tools which are included) the goal of integrated urban water management (IUWM).
Strengthen programs of family and community engagement to promote equity and increase student success! When schools, families, and communities collaborate and share responsibility for students′ education, more students succeed in school. Based on 30 years of research and fieldwork, the fourth edition of the bestseller School, Family, and Community Partnerships: Your Handbook for Action, presents tools and guidelines to help develop more effective and more equitable programs of family and community engagement. Written by a team of well-known experts, it provides a theory and framework of six types of involvement for action; up-to-date research on school, family, and community collaboration; and new materials for professional development and on-going technical assistance. Readers also will find: Examples of best practices on the six types of involvement from preschools, and elementary, middle, and high schools Checklists, templates, and evaluations to plan goal-linked partnership programs and assess progress CD-ROM with slides and notes for two presentations: A new awareness session to orient colleagues on the major components of a research-based partnership program, and a full One-Day Team Training Workshop to prepare school teams to develop their partnership programs. As a foundational text, this handbook demonstrates a proven approach to implement and sustain inclusive, goal-linked programs of partnership. It shows how a good partnership program is an essential component of good school organization and school improvement for student success. This book will help every district and all schools strengthen and continually improve their programs of family and community engagement.