Foundations of Mathematical Analysis

Foundations of Mathematical Analysis

Author: Richard Johnsonbaugh

Publisher: Courier Corporation

Published: 2012-09-11

Total Pages: 450

ISBN-13: 0486134776

DOWNLOAD EBOOK

Definitive look at modern analysis, with views of applications to statistics, numerical analysis, Fourier series, differential equations, mathematical analysis, and functional analysis. More than 750 exercises; some hints and solutions. 1981 edition.


Functional Analysis

Functional Analysis

Author: Walter Rudin

Publisher: McGraw-Hill Companies

Published: 1973

Total Pages: 420

ISBN-13:

DOWNLOAD EBOOK

This classic text is written for graduate courses in functional analysis. This text is used in modern investigations in analysis and applied mathematics. This new edition includes up-to-date presentations of topics as well as more examples and exercises. New topics include Kakutani's fixed point theorem, Lamonosov's invariant subspace theorem, and an ergodic theorem. This text is part of the Walter Rudin Student Series in Advanced Mathematics.


Principles of Mathematical Analysis

Principles of Mathematical Analysis

Author: Walter Rudin

Publisher: McGraw-Hill Publishing Company

Published: 1976

Total Pages: 342

ISBN-13: 9780070856134

DOWNLOAD EBOOK

The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. This text is part of the Walter Rudin Student Series in Advanced Mathematics.


Real Analysis

Real Analysis

Author: N. L. Carothers

Publisher: Cambridge University Press

Published: 2000-08-15

Total Pages: 420

ISBN-13: 9780521497565

DOWNLOAD EBOOK

A text for a first graduate course in real analysis for students in pure and applied mathematics, statistics, education, engineering, and economics.


Mathematical Analysis I

Mathematical Analysis I

Author: Vladimir A. Zorich

Publisher: Springer Science & Business Media

Published: 2004-01-22

Total Pages: 610

ISBN-13: 9783540403869

DOWNLOAD EBOOK

This work by Zorich on Mathematical Analysis constitutes a thorough first course in real analysis, leading from the most elementary facts about real numbers to such advanced topics as differential forms on manifolds, asymptotic methods, Fourier, Laplace, and Legendre transforms, and elliptic functions.


Real Mathematical Analysis

Real Mathematical Analysis

Author: Charles Chapman Pugh

Publisher: Springer Science & Business Media

Published: 2013-03-19

Total Pages: 445

ISBN-13: 0387216847

DOWNLOAD EBOOK

Was plane geometry your favourite math course in high school? Did you like proving theorems? Are you sick of memorising integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past studies of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians like Dieudonne, Littlewood and Osserman. The author has taught the subject many times over the last 35 years at Berkeley and this book is based on the honours version of this course. The book contains an excellent selection of more than 500 exercises.


The Fundamentals of Mathematical Analysis

The Fundamentals of Mathematical Analysis

Author: G. M. Fikhtengol'ts

Publisher: Elsevier

Published: 2014-08-01

Total Pages: 541

ISBN-13: 1483154130

DOWNLOAD EBOOK

The Fundamentals of Mathematical Analysis, Volume 2 is a continuation of the discussion of the fundamentals of mathematical analysis, specifically on the subject of curvilinear and surface integrals, with emphasis on the difference between the curvilinear and surface ""integrals of first kind"" and ""integrals of second kind."" The discussions in the book start with an introduction to the elementary concepts of series of numbers, infinite sequences and their limits, and the continuity of the sum of a series. The definition of improper integrals of unbounded functions and that of uniform convergence of integrals are explained. Curvilinear integrals of the first and second kinds are analyzed mathematically. The book then notes the application of surface integrals, through a parametric representation of a surface, and the calculation of the mass of a solid. The text also highlights that Green's formula, which connects a double integral over a plane domain with curvilinear integral along the contour of the domain, has an analogue in Ostrogradski's formula. The periodic values and harmonic analysis such as that found in the operation of a steam engine are analyzed. The volume ends with a note of further developments in mathematical analysis, which is a chronological presentation of important milestones in the history of analysis. The book is an ideal reference for mathematicians, students, and professors of calculus and advanced mathematics.


Elementary Classical Analysis

Elementary Classical Analysis

Author: Jerrold E. Marsden

Publisher: Macmillan

Published: 1993-03-15

Total Pages: 760

ISBN-13: 9780716721055

DOWNLOAD EBOOK

Designed for courses in advanced calculus and introductory real analysis, Elementary Classical Analysis strikes a careful balance between pure and applied mathematics with an emphasis on specific techniques important to classical analysis without vector calculus or complex analysis. Intended for students of engineering and physical science as well as of pure mathematics.


Analysis I

Analysis I

Author: Terence Tao

Publisher: Springer

Published: 2016-08-29

Total Pages: 366

ISBN-13: 9811017891

DOWNLOAD EBOOK

This is part one of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.