This comprehensive work discusses novel biomolecular surfaces that have been engineered to either control or measure cell function at the atomic, molecular, and cellular levels. Each chapter presents real results, concepts, and expert perspectives of how cells interact with biomolecular surfaces, with particular emphasis on interactions within complex mechanical environments such as in the cardiovascular system. In addition, the book provides detailed coverage of inflammation and cellular immune response as a useful model for how engineering concepts and tools may be effectively applied to complex systems in biomedicine.-Accessible to biologists looking for new ways to model their results and engineers interested in biomedical applications -Useful to researchers in biomaterials, inflammation, and vascular biology -Excellent resource for graduate students as a textbook in cell & tissue engineering or cell mechanics courses
The opportunity that tissue engineering provides for medicine is extraordinary. In the United States alone, over half-a-trillion dollars are spent each year to care for patients who suffer from tissue loss or dysfunction. Although numerous books and reviews have been written on tissue engineering, none has been as comprehensive in its defining of the field. Principles of Tissue Engineering combines in one volume the prerequisites for a general understanding of tissue growth and development, the tools and theoretical information needed to design tissues and organs, as well as a presentation of applications of tissue engineering to diseases affecting specific organ systems. The first edition of the book, published in 1997, is the definite reference in the field. Since that time, however, the discipline has grown tremendously, and few experts would have been able to predict the explosion in our knowledge of gene expression, cell growth and differentiation, the variety of stem cells, new polymers and materials that are now available, or even the successful introduction of the first tissue-engineered products into the marketplace. There was a need for a new edition, and this need has been met with a product that defines and captures the sense of excitement, understanding and anticipation that has followed from the evolution of this fascinating and important field.Key Features* Provides vast, detailed analysis of research on all of the major systems of the human body, e.g., skin, muscle, cardiovascular, hematopoietic, and nerves* Essential to anyone working in the field* Educates and directs both the novice and advanced researcher* Provides vast, detailed analysis of research with all of the major systems of the human body, e.g. skin, muscle, cardiovascular, hematopoietic, and nerves* Has new chapters written by leaders in the latest areas of research, such as fetal tissue engineering and the universal cell* Considered the definitive reference in the field* List of contributors reads like a "who's who" of tissue engineering, and includes Robert Langer, Joseph Vacanti, Charles Vacanti, Robert Nerem, A. Hari Reddi, Gail Naughton, George Whitesides, Doug Lauffenburger, and Eugene Bell, among others
While the potential of stem cells is recognized, their proliferation and differentiation must be more precisely controlled to maximize the production of therapeutically relevant cells and for cell replacement therapies to minimize contamination with residual cells that can give rise to side effects. How can engineers make contributions to address these challenges? With contributions from pioneers and experts, Stem Cell Engineering: Principles and Practices highlights recent advances in the understanding of the cellular and molecular composition of the stem cell niche, as well as approaches to build upon this basic information to direct stem cell differentiation into therapeutically valuable lineages. The growing recognition of stem cells as an important and exciting field will continue to draw investigators with diverse backgrounds—from biology, engineering, and the physical sciences—and thereby enable further progress in these and other new directions. This book discusses advances made during the last decade that have led to increasingly defined culture systems for growing stem cells, starting from co-culture with feeder cells in the presence of serum to growth on synthetic substrates in defined medium. In addition to highlighting many recent advances, it underscores the need for future work.
Developmental Biology and Musculoskeletal Tissue Engineering: Principles and Applications focuses on the regeneration of orthopedic tissue, drawing upon expertise from developmental biologists specializing in orthopedic tissues and tissue engineers who have used and applied developmental biology approaches. Musculoskeletal tissues have an inherently poor repair capacity, and thus biologically-based treatments that can recapitulate the native tissue properties are desirable. Cell- and tissue-based therapies are gaining ground, but basic principles still need to be addressed to ensure successful development of clinical treatments. Written as a source of information for practitioners and those with a nascent interest, it provides background information and state-of-the-art solutions and technologies. Recent developments in orthopedic tissue engineering have sought to recapitulate developmental processes for tissue repair and regeneration, and such developmental-biology based approaches are also likely to be extremely amenable for use with more primitive stem cells. - Brings the fields of tissue engineering and developmental biology together to explore the potential for regenerative medicine-based research to contribute to enhanced clinical outcomes - Initial chapters provide an outline of the development of the musculoskeletal system in general, and later chapters focus on specific tissues - Addresses the effect of mechanical forces on the musculoskeletal system during development and the relevance of these processes to tissue engineering - Discusses the role of genes in the development of musculoskeletal tissues and their potential use in tissue engineering - Describes how developmental biology is being used to influence and guide tissue engineering approaches for cartilage, bone, disc, and tendon repair
Tissue Engineering is a comprehensive introduction to the engineering and biological aspects of this critical subject. With contributions from internationally renowned authors, it provides a broad perspective on tissue engineering for students coming to the subject for the first time. In addition to the key topics covered in the previous edition, this update also includes new material on the regulatory authorities, commercial considerations as well as new chapters on microfabrication, materiomics and cell/biomaterial interface. - Effectively reviews major foundational topics in tissue engineering in a clear and accessible fashion - Includes state of the art experiments presented in break-out boxes, chapter objectives, chapter summaries, and multiple choice questions to aid learning - New edition contains material on regulatory authorities and commercial considerations in tissue engineering
Step-by-step, practical guidance for the acquisition, manipulation,and use of cell sources for tissue engineering Tissue engineering is a multidisciplinary field incorporatingthe principles of biology, chemistry, engineering, and medicine tocreate biological substitutes of native tissues for scientificresearch or clinical use. Specific applications of this technologyinclude studies of tissue development and function, investigatingdrug response, and tissue repair and replacement. This area israpidly becoming one of the most promising treatment options forpatients suffering from tissue failure. Written by leading experts in the field, Culture of Cellsfor Tissue Engineering offers step-by-step, practicalguidance for the acquisition, manipulation, and use of cell sourcesfor tissue engineering. It offers a unique focus on tissueengineering methods for cell sourcing and utilization, combiningtheoretical overviews and detailed procedures. Features of the text include: Easy-to-use format with a two-part organization Logically organized—part one discusses cell sourcing,preparation, and characterization and the second part examinesspecific engineered tissues Each chapter covers: structural and functional properties oftissues, methodological principles, culture, cellselection/expansion, cell modifications, cell seeding, tissueculture, analytical assays, and a detailed description ofrepresentative studies End-of-chapter features include useful listings of sources forreagents, materials, and supplies, with the contact details of thesuppliers listed at the end of the book A section of elegant color plates to back up the figures in thechapters Culture of Cells for Tissue Engineering givesnovice and seasoned researchers in tissue engineering an invaluableresource. In addition, the text is suitable for professionals inrelated research, particularly in those areas where cell and tissueculture is a new or emerging tool.
Virtually any disease that results from malfunctioning, damaged, or failing tissues may be potentially cured through regenerative medicine therapies, by either regenerating the damaged tissues in vivo, or by growing the tissues and organs in vitro and implanting them into the patient. Principles of Regenerative Medicine discusses the latest advances in technology and medicine for replacing tissues and organs damaged by disease and of developing therapies for previously untreatable conditions, such as diabetes, heart disease, liver disease, and renal failure. - Key for all researchers and instituions in Stem Cell Biology, Bioengineering, and Developmental Biology - The first of its kind to offer an advanced understanding of the latest technologies in regenerative medicine - New discoveries from leading researchers on restoration of diseased tissues and organs
Metabolic engineering is a rapidly evolving field that is being applied for the optimization of many different industrial processes. In this issue of Advances in Biochemical Engineering/Biotechnology, developments in different areas of metabolic engineering are reviewed. The contributions discuss the application of metabolic engineering in the improvement of yield and productivity - illustrated by amino acid production and the production of novel compounds - in the production of polyketides and extension of the substrate range - and in the engineering of S. cerevisiae for xylose metabolism, and the improvement of a complex biotransformation process.
This reference book combines the tools, experimental protocols, detailed descriptions and know-how for the successful engineering of tissues and organs in one volume.
Engineering Neural Tissue from Stem Cells covers the basic knowledge needed to understand the nervous system and how existing cells can be used to create neural tissue. This book presents a broad range of topics related to the design requirements for engineering neural tissue from stem cells. It begins with the anatomy and function of the central and peripheral nervous system, also covering stem cells, their relation to the nervous system and their function in recovery after injury or disease. In addition, the book explores the role of the extracellular matrix and vasculature/immune system and biomaterials, including their suitability for neural tissue engineering applications. - Provides readers entering the field with a strong basis of neural tissue engineering processes and real-world applications - Discusses the most current clinical trials and their importance of treating nervous system disorders - Reviews the structure and immune response of the nervous system, including the brain, spinal cord and their present cells - Offers a necessary overview of the natural and synthetic biomaterials used to engineer neural tissue