This book aims to teach students, instructors and professionals the basis of optical techniques for biomedical investigation. It is a text for researchers active at the interface between biology, medicine and optics. With the format of a classical textbook, this work contains the underlying theory of biological optics and applications to real laboratory problems, via exercises and homework.
Paras Prasad’s text provides a basic knowledge of a broad range of topics so that individuals in all disciplines can rapidly acquire the minimal necessary background for research and development in biophotonics. Introduction to Biophotonics serves as both a textbook for education and training as well as a reference book that aids research and development of those areas integrating light, photonics, and biological systems. Each chapter contains a topic introduction, a review of key data, and description of future directions for technical innovation. Introduction to Biophotonics covers the basic principles of Optics Optical spectroscopy Microscopy Each section also includes illustrated examples and review questions to test and advance the reader’s knowledge. Sections on biosensors and chemosensors, important tools for combating biological and chemical terrorism, will be of particular interest to professionals in toxicology and other environmental disciplines. Introduction to Biophotonics proves a valuable reference for graduate students and researchers in engineering, chemistry, and the life sciences.
This book introduces senior-level and postgraduate students to the principles and applications of biophotonics. It also serves as a valuable reference resource or as a short-course textbook for practicing physicians, clinicians, biomedical researchers, healthcare professionals, and biomedical engineers and technicians dealing with the design, development, and application of photonics components and instrumentation to biophotonics issues. The topics include the fundamentals of optics and photonics, the optical properties of biological tissues, light-tissue interactions, microscopy for visualizing tissue components, spectroscopy for optically analyzing the properties of tissue, and optical biomedical imaging. It also describes tools and techniques such as laser and LED optical sources, photodetectors, optical fibers, bioluminescent probes for labeling cells, optical-based biosensors, surface plasmon resonance, and lab-on-a-chip technologies. Among the applications are optical coherence tomography (OCT), optical imaging modalities, photodynamic therapy (PDT), photobiostimulation or low-level light therapy (LLLT), diverse microscopic and spectroscopic techniques, tissue characterization, laser tissue ablation, optical trapping, and optogenetics. Worked examples further explain the material and how it can be applied to practical designs, and the homework problems help test readers’ understanding of the text.
"Photonics is a light-based optical technology that is considered as the leading technology for the new millennium. The science of light generation, manipulation, transmission, and measurement is known as photonics. The application of photonics technologies and principles to medicine and life sciences is known as biophotonics. Laser (Light Amplification by the Stimulated Emission of Radiation) is one of the most important inventions of the twentieth century in biophotonic technology. In the field of oral medicine, lasers have a multitude of preventive, therapeutic and adjunctive applications. Applications in clinical scenarios like orofacial pain, temporomandibular joint disorders, potentially malignant disorders of oral mucosa, herpes, recurrent apthous ulcers, burning mouth syndrome, nerve repair, laser and antimicrobial photodynamic therapies in cancer patients, non-neoplastic proliferative lesions of oral soft tissue, and vascular lesions have shown promising results. Lasers also aid in optically enhanced diagnosis of oral lesions using florescence, coherence and spectroscopic techniques. This endeavor, entitled A Compendium of Principles and Practice of Laser Biophotonics in Oral Medicine, is a concise but comprehensive body of information, written in a simple tone, attempting to cruise the readers' vision through every perspective, to seek objective information on all aspects of the instrument and its uses, fostering a preliminary step towards efficient laser diagnosis and therapy. This book facilitates exploration of physical concepts with lucidity without getting engrossed in excruciating jargon"--
Biophotonics involves understanding how light interacts with biological matter, from molecules and cells, to tissues and even whole organisms. Light can be used to probe biomolecular events, such as gene expression and protein-protein interaction, with impressively high sensitivity and specificity. The spatial and temporal distribution of biochemic
Biophotonics is a burgeoning field that has afforded researchers and medical practitioners alike an invaluable tool for implementing optical microscopy. Recent advances in research have enabled scientists to measure and visualize the structural composition of cells and tissue while generating applications that aid in the detection of diseases such as cancer, Alzheimer’s, and atherosclerosis. Rather than divulge a perfunctory glance into the field of biophotonics, this textbook aims to fully immerse senior undergraduates, graduates, and research professionals in the fundamental knowledge necessary for acquiring a more advanced awareness of concepts and pushing the field beyond its current boundaries. The authors furnish readers with a pragmatic, quantitative, and systematic view of biophotonics, engaging such topics as light-tissue interaction, the use of optical instrumentation, and formulating new methods for performing analysis. Designed for use in classroom lectures, seminars, or professional laboratories, the inclusion and incorporation of this textbook can greatly benefit readers as it serves as a comprehensive introduction to current optical techniques used in biomedical applications. Caters to the needs of graduate and undergraduate students as well as R&D professionals engaged in biophotonics research. Guides readers in the field of biophotonics, beginning with basic concepts before proceeding to more advanced topics and applications. Serves as a primary text for attaining an in-depth, systematic view of principles and applications related to biophotonics. Presents a quantitative overview of the fundamentals of biophotonic technologies. Equips readers to apply fundamentals to practical aspects of biophotonics.
This Volume 2 of Principles of Biophotonics continues to pour the foundation on which the next five volumes of optics and three volumes of methods will be built. While Volume 1 covered the mathematical apparatus to be used throughout the book, Volume 2 describes the emission, detection, and statistical representation of optical fields. The book starts by placing the visible spectrum in the context of the electromagnetic frequency range. This presentation stresses how thin of a sliver one normally calls the 'optical' spectrum. And, yet, so much can be accomplished within this narrow range of frequencies. To be able to describe properties of light with technical accuracy, the most common radiometric quantities that the reader is bound to encounter in subsequent volumes are introduced. Although the conversion to photon-based quantities is straightforward, it is presented explicitly, to avoid any confusion. For completeness, an analogy to the photometric quantities of light is drawn as well. Each chapter also contains a set of practice problems and additional references. Part of Series in Physics and Engineering in Medicine and Biology.
Biophotonic diagnostics/biomedical spectroscopy can revolutionise the medical environment by providing a responsive and objective diagnostic environment. This book aims to explain the fundamentals of the physical techniques used combined with the particular requirements of analysing medical/clinical samples as a resource for any interested party. In addition, it will show the potential of this field for the future of medical science and act as a driver for translation across many different biological problems/questions.
Biophotonics, Tryptophan and Disease is a comprehensive resource on the key role of tryptophan in wide range of diseases as seen by using optics techniques. It explores the use of fluorescence spectroscopy, Raman, imaging techniques and time-resolved spectroscopy in normal and diseased tissues and shows the reader how light techniques (i.e. spectroscopy and imaging) can be used to detect, distinguish and evaluate diseases. Diseases covered include cancer, neurodegenerative diseases and other age-related diseases. Biophotonics, Tryptophan and Disease offers a clear presentation of techniques and integrates material from different disciplines into one resource. It is a valuable reference for students and interdisciplinary researchers working on the interface between biochemistry and molecular biology, translational medicine, and biophotonics. - Shows the key role of tryptophan in diseases - Emphasizes how optical techniques can be potent means of assessing many diseases - Points to new ways of understanding autism, aging, depression, cancer and neurodegenerative diseases
Light Robotics – Structure-Mediated Nanobiophotonics covers the latest means of sculpting of both light and matter for achieving bioprobing and manipulation at the smallest scales. The synergy between photonics, nanotechnology and biotechnology spans the rapidly growing field of nanobiophotonics. Nanoscale resolutions enable optical scientists to assess ever more accurate information. However, scientific hypothesis testing demands tools, not only for observing nanoscopic phenomena, but also for reaching into and manipulating nanoscale constituents. Taking an application based focus, this book explores how nanophotonics can productively be used in both the biomedical and life sciences, allowing readers to clearly see how structure-mediated nanobiophotonics can be used to increase our engineering toolbox for biology at the smallest scales. This book will be of great use to researchers and scientists working in the fields of optics and photonics. It will also be of great value to those working in the field of biotechnology, showcasing how nanotechnology can help provide new, effective ways to solve biomedical problems. - Presents cutting-edge research on the principles, mechanisms, optical techniques, fabrication, modeling, devices and applications of nanobiophotonics - Brings together the diverse field of structure-mediated nanobiophotonics into one coherent volume - Showcases how nanophotonics can be used to create new, more effective micro- and nano-biodevices