Principles of Adsorption and Reaction on Solid Surfaces

Principles of Adsorption and Reaction on Solid Surfaces

Author: Richard I. Masel

Publisher: John Wiley & Sons

Published: 1996-03-22

Total Pages: 826

ISBN-13: 9780471303923

DOWNLOAD EBOOK

Principles of Adsorption and Reaction on Solid Surfaces As with other books in the field, Principles of Adsorption and Reaction on Solid Surfaces describes what occurs when gases come in contact with various solid surfaces. But, unlike all the others, it also explains why. While the theory of surface reactions is still under active development, the approach Dr. Richard Masel takes in this book is to outline general principles derived from thermodynamics and reaction rate theory that can be applied to reactions on surfaces, and to indicate ways in which these principles may be applied. The book also provides a comprehensive treatment of the latest quantitative surface modeling techniques with numerous examples of their use in the fields of chemical engineering, physical chemistry, and materials science. A valuable working resource and an excellent graduate-level text, Principles of Adsorption and Reaction on Solid Surfaces provides readers with: * A detailed look at the latest advances in understanding and quantifying reactions on surfaces * In-depth reviews of all crucial background material * 40 solved examples illustrating how the methods apply to catalysis, physical vapor deposition, chemical vapor deposition, electrochemistry, and more * 340 problems and practice exercises * Sample computer programs * Universal plots of many key quantities * Detailed, class-tested derivations to help clarify key results The recent development of quantitative techniques for modeling surface reactions has led to a number of exciting breakthroughs in our understanding of what happens when gases come in contact with solid surfaces. While many books have appeared describing various experimental modeling techniques and the results obtained through their application, until now, there has been no single-volume reference devoted to the fundamental principles governing the processes observed. The first book to focus on governing principles rather than experimental techniques or specific results, Principles of Adsorption and Reaction on Solid Surfaces provides students and professionals with a quantitative treatment of the application of principles derived from the fields of thermodynamics and reaction rate theory to the investigation of gas adsorption and reaction on solid surfaces. Writing for a broad-based audience including, among others, chemical engineers, chemists, and materials scientists, Dr. Richard I. Masel deftly balances basic background in areas such as statistical mechanics and kinetics with more advanced applications in specialized areas. Principles of Adsorption and Reaction on Solid Surfaces was also designed to provide readers an opportunity to quickly familiarize themselves with all of the important quantitative surface modeling techniques now in use. To that end, the author has included all of the key equations involved as well as numerous real-world illustrations and solved examples that help to illustrate how the equations can be applied. He has also provided computer programs along with universal plots that make it easy for readers to apply results to their own problems with little computational effort. Principles of Adsorption and Reaction on Solid Surfaces is a valuable working resource for chemical engineers, physical chemists, and materials scientists, and an excellent text for graduate students in those disciplines.


Reactions at Solid Surfaces

Reactions at Solid Surfaces

Author: Gerhard Ertl

Publisher: John Wiley & Sons

Published: 2010-06-17

Total Pages: 150

ISBN-13: 9780470535288

DOWNLOAD EBOOK

Expanding on the ideas first presented in Gerhard Ertl's acclaimed Baker Lectures at Cornell University, Reactions at Solid Surfaces comprises an authoritative, self-contained, book-length introduction to surface reactions for both professional chemists and students alike. Outlining our present understanding of the fundamental processes underlying reactions at solid surfaces, the book provides the reader with a complete view of how chemistry works at surfaces, and how to understand and probe the dynamics of surface reactions. Comparing traditional surface probes with more modern ones, and bringing together various disciplines in a cohesive manner, Gerhard Ertl's Reactions at Solid Surfaces serves well as a primary text for graduate students in introductory surface science or chemistry, as well as a self-teaching resource for professionals in surface science, chemical engineering, or nanoscience.


Exoemission from Processed Solid Surfaces and Gas Adsorption

Exoemission from Processed Solid Surfaces and Gas Adsorption

Author: Yoshihiro Momose

Publisher: Springer Nature

Published: 2022-11-24

Total Pages: 238

ISBN-13: 9811969485

DOWNLOAD EBOOK

This book focuses on surface activity of electron emission (EE). Prior to protective painting, a steel surface is usually grit blasted or sandblasted to remove scale and contaminants and to roughen the surface. This book emphasizes that such surface treatment causes EE, increasing the strength of paint adhesion. Introduced here are the experimental results of thermally assisted photoelectron emission (TAPE) and tribo-stimulated (rubbing) electron emission (TriboEE) from practical metals after different kinds of surface-treatment processes. A detailed description is given of how Arrhenius activation energies relating to electron transfer through the surface overlayer and also the energy levels of electrons trapped in the overlayer can be obtained, and how TAPE and TriboEE data can be influenced by the chemical properties of that overlayer. This book is composed of four parts: I. Surface treatment processes; II. The principle of EE analysis used for practical surfaces; III. Materials and methods of EE and X-ray photoelectron spectroscopy (XPS); IV. EE and XPS characteristics of practical surfaces. In the last part, the EE and XPS results for metals, semiconductors, and carbon materials are drawn from the author’s own publications. The book will be useful for researchers engaging in surface-treatment processes of various materials.


Chemical Bonding at Surfaces and Interfaces

Chemical Bonding at Surfaces and Interfaces

Author: Anders Nilsson

Publisher: Elsevier

Published: 2011-08-11

Total Pages: 533

ISBN-13: 0080551912

DOWNLOAD EBOOK

Molecular surface science has made enormous progress in the past 30 years. The development can be characterized by a revolution in fundamental knowledge obtained from simple model systems and by an explosion in the number of experimental techniques. The last 10 years has seen an equally rapid development of quantum mechanical modeling of surface processes using Density Functional Theory (DFT). Chemical Bonding at Surfaces and Interfaces focuses on phenomena and concepts rather than on experimental or theoretical techniques. The aim is to provide the common basis for describing the interaction of atoms and molecules with surfaces and this to be used very broadly in science and technology. The book begins with an overview of structural information on surface adsorbates and discusses the structure of a number of important chemisorption systems. Chapter 2 describes in detail the chemical bond between atoms or molecules and a metal surface in the observed surface structures. A detailed description of experimental information on the dynamics of bond-formation and bond-breaking at surfaces make up Chapter 3. Followed by an in-depth analysis of aspects of heterogeneous catalysis based on the d-band model. In Chapter 5 adsorption and chemistry on the enormously important Si and Ge semiconductor surfaces are covered. In the remaining two Chapters the book moves on from solid-gas interfaces and looks at solid-liquid interface processes. In the final chapter an overview is given of the environmentally important chemical processes occurring on mineral and oxide surfaces in contact with water and electrolytes. - Gives examples of how modern theoretical DFT techniques can be used to design heterogeneous catalysts - This book suits the rapid introduction of methods and concepts from surface science into a broad range of scientific disciplines where the interaction between a solid and the surrounding gas or liquid phase is an essential component - Shows how insight into chemical bonding at surfaces can be applied to a range of scientific problems in heterogeneous catalysis, electrochemistry, environmental science and semiconductor processing - Provides both the fundamental perspective and an overview of chemical bonding in terms of structure, electronic structure and dynamics of bond rearrangements at surfaces


Thermostable Proteins

Thermostable Proteins

Author: Srikanta Sen

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 184

ISBN-13: 143983914X

DOWNLOAD EBOOK

This book covers the basic structural, thermodynamic and kinetic principles are covered and molecular strategies for the adaptation to high temperatures revealed by structure analysis are delineated. The roles of fluctuations, hydration and internal packing are thoroughly dicussed. Enzymes with a particular industrial importance, the subtilisin-like serine proteases, have been extensively studied by protein engineering. One extensive chapter is devoted to the present state of knowledge concerning structure-function relations and the origin of the their structural stability. Last but not least, computational and experimental approaches for the design of proteins with increased thermal stability based on sequences or 3D structures are present


Inorganic Chemistry

Inorganic Chemistry

Author: James E. House

Publisher: Academic Press

Published: 2019-11-01

Total Pages: 980

ISBN-13: 0128143703

DOWNLOAD EBOOK

Inorganic Chemistry, Third Edition, emphasizes fundamental principles, including molecular structure, acid-base chemistry, coordination chemistry, ligand field theory and solid state chemistry. The book is organized into five major themes: structure, condensed phases, solution chemistry, main group and coordination compounds, each of which is explored with a balance of topics in theoretical and descriptive chemistry. Topics covered include the hard-soft interaction principle to explain hydrogen bond strengths, the strengths of acids and bases, and the stability of coordination compounds, etc. Each chapter opens with narrative introductions and includes figures, tables and end-of-chapter problem sets. This new edition features updates throughout, with an emphasis on bioinorganic chemistry and a new chapter on nanostructures and graphene. In addition, more in-text worked-out examples encourage active learning and prepare students for exams. This text is ideal for advanced undergraduate and graduate-level students enrolled in the Inorganic Chemistry course. - Includes physical chemistry to show the relevant principles from bonding theory and thermodynamics - Emphasizes the chemical characteristics of main group elements and coordination chemistry - Presents chapters that open with narrative introductions, figures, tables and end-of-chapter problem sets


Chemisorption and Reactivity on Supported Clusters and Thin Films:

Chemisorption and Reactivity on Supported Clusters and Thin Films:

Author: R.M. Lambert

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 534

ISBN-13: 9401589119

DOWNLOAD EBOOK

Heterogeneous catalysis provides the backbone of the world's chemical and oil industries. The innate complexity of practical catalytic systems suggests that useful progress should be achievable by investigating key aspects of catalysis by experimental studies on idealised model systems. Thin films and supported clusters are two promising types of model system that can be used for this purpose, since they mimic important aspects of the properties of practical dispersed catalysts. Similarly, appropriate theoretical studies of chemisorption and surface reaction clusters or extended slab systems can provide valuable information on the factors that underlie bonding and catalytic activity. This volume describes such experimental and theoretical approaches to the surface chemistry and catalytic behaviour of metals, metal oxides and metal/metal oxide systems. An introduction to the principles and main themes of heterogeneous catalysis is followed by detailed accounts of the application of modern experimental and theoretical techniques to fundamental problems. The application of advanced experimental methods is complemented by a full description of theoretical procedures, including Hartree-Fock, density functional and similar techniques. The relative merits of the various approaches are considered and directions for future progress are indicated.


Handbook of Materials Modeling

Handbook of Materials Modeling

Author: Sidney Yip

Publisher: Springer Science & Business Media

Published: 2007-11-17

Total Pages: 2903

ISBN-13: 1402032862

DOWNLOAD EBOOK

The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.


Theoretical Advancement in Chromatography and Related Separation Techniques

Theoretical Advancement in Chromatography and Related Separation Techniques

Author: Francesco Dondi

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 651

ISBN-13: 9401126860

DOWNLOAD EBOOK

Chromatography and all the related separation techniques are experimental in their origin and justification. However, the spectacular progress made in this area since World War II has given rise to a theoretical underpinning. The present book covers the current status of the research area and places it in perspective with the general concepts of the fields of physical chemistry involved. The ASI lectures/authors -- well known leaders in their fields -- have written presentations at the graduate level, accessible to all those who have a good general background in the thermodynamics and mass transfer theory of phase equilibria. The book will be useful to young scientists and engineers who wish to access the current frontiers in chromatography and other separation sciences.


Metal Oxide Nanoparticles, 2 Volume Set

Metal Oxide Nanoparticles, 2 Volume Set

Author: Oliver Diwald

Publisher: John Wiley & Sons

Published: 2021-09-14

Total Pages: 903

ISBN-13: 1119436745

DOWNLOAD EBOOK

Metal Oxide Nanoparticles A complete nanoparticle resource for chemists and industry professionals Metal oxide nanoparticles are integral to a wide range of natural and technological processes—from mineral transformation to electronics. Additionally, the fields of engineering, electronics, energy technology, and electronics all utilize metal oxide nanoparticle powders. Metal Oxide Nanoparticles: Formation, Functional Properties, and Interfaces presents readers with the most relevant synthesis and formulation approaches for using metal oxide nanoparticles as functional materials. It covers common processing routes and the assessment of physical and chemical particle properties through comprehensive and complementary characterization methods. This book will serve as an introduction to nanoparticle formulation, their interface chemistry and functional properties at the nanoscale. It will also act as an in-depth resource, sharing detailed information on advanced approaches to the physical, chemical, surface, and interface characterization of metal oxide nanoparticle powders and dispersions. Addresses the application of metal oxide nanoparticles and its economic impact Examines particle synthesis, including the principles of selected bottom-up strategies Explores nanoparticle formulation—a selection of processing and application routes Discusses the significance of particle surfaces and interfaces on structure formation, stability and functional materials properties Covers metal oxide nanoparticle characterization at different length scales With this valuable resource, academic researchers, industrial chemists, and PhD students can all gain insight into the synthesis, properties, and applications of metal oxide nanoparticles.