Covering traditional and emerging breeding procedures, this book explores the scientific bases and details of breeding plants. It puts a special emphasis on the further refinements possible in the light of the latest developments in molecular biology. Specific breeding methods in self and cross-pollinated crops, their genetic basis and scope of further refinements, concepts and techniques of tissue culture, molecular biology and production of transgenic plants, commonly used experimental designs in plant breeding, seed production, and implications of plant breeder's rights are other highlights.
Marker-assisted plant breeding involves the application of molecular marker techniques and statistical and bioinformatics tools to achieve plant breeding objectives in a cost-effective and time-efficient manner. This book is intended for beginners in the field who have little or no prior exposure to molecular markers and their applications, but who do have a basic knowledge of genetics and plant breeding, and some exposure to molecular biology. An attempt has been made to provide sufficient basic information in an easy-to-follow format, and also to discuss current issues and developments so as to offer comprehensive coverage of the subject matter. The book will also be useful for breeders and research workers, as it offers a broad range of up-to-the-year information, including aspects like the development of different molecular markers and their various applications. In the first chapter, the field of marker-assisted plant breeding is introduced and placed in the proper perspective in relation to plant breeding. The next three chapters describe the various molecular marker systems, while mapping populations and mapping procedures including high-throughput genotyping are discussed in the subsequent five chapters. Four chapters are devoted to various applications of markers, e.g. marker-assisted selection, genomic selection, diversity analysis, finger printing and positional cloning. In closing, the last two chapters provide information on relevant bioinformatics tools and the rapidly evolving field of phenomics.
Die Pflanzenzucht enthält Elemente individueller und kultureller Selektion - ein Prozeß, den die langerwartete zweite Auflage hinsichtlich sowohl einzelner Pflanzen als auch kompletter Populationen unter die Lupe nimmt. Im Zuge der Aktualisierung des Stoffes wurden neue Themen aufgenommen: moderne Gewebekulturtechniken, molekularbiologische Verfahren, Aspekte der Wechselwirkung zwischen natürlicher und menschlicher Selektion und zwischen Genotyp und Umwelt sowie eine Reihe von Techniken zur Ertragssteigerung in ungünstigen Anbaugebieten. (05/99)
Plant Breeding and Cultivar Development features an optimal balance between classical and modern tools and techniques related to plant breeding. Written for a global audience and based on the extensive international experience of the authors, the book features pertinent examples from major and minor world crops. Advanced data analytics (machine learning), phenomics and artificial intelligence are explored in the book's 28 chapters that cover classical and modern plant breeding. By presenting these advancements in specific detail, private and public sector breeding programs will learn about new, effective and efficient implementation. The insights are clear enough that non-plant breeding majoring students will find it useful to learn about the subject, while advanced level students and researchers and practitioners will find practical examples that help them implement their work. - Bridges the gap between conventional breeding practices and state-of-the-art technologies - Provides real-world case studies of a wide range of plant breeding techniques and practices - Combines insights from genetics, genomics, breeding science, statistics, computer science and engineering for crop improvement and cultivar development
Recent progress in biotechnology and genomics has expanded the plant breeders’ horizon providing a molecular platform on the traditional plant breeding, which is now known as ‘plant molecular breeding’. Although diverse technologies for molecular breeding have been developed and applied individually for plant genetic improvement, common use in routine breeding programs seems to be limited probably due to the complexity and incomplete understanding of the technologies. This book is intended to provide a guide for researchers or graduate students involved in plant molecular breeding by describing principles and application of recently developed technologies with actual case studies for practical use. The nine topics covered in this book include the basics on genetic analysis of agronomic traits, methods of detecting QTLs, the application of molecular markers, genomics-assisted breeding including epigenomic issues, and genome-wide association studies. Identification methods of mutagenized plants, actual case studies for the isolation and functional studies of genes, the basics of gene transfer in major crops and the procedures for commercialization of GM crops are also described. This book would be a valuable reference for plant molecular breeders and a cornerstone for the development of new technologies in plant molecular breeding for the future.
While preparing the first edition of this textbook I attended an extension short course on writing agricultural publications. The message I remember was "select your audience and write to it. " There has never been any doubt about the audience for which this textbook was written, the introductory course in crop breeding. In addition, it has become a widely used reference for the graduate plant-breeding student and the practicing plant breeder. In its prepa ration, particular attention has been given to advances in plant-breeding theo ry and their utility in plant-breeding practice. The blend of the theoretical with the practical has set this book apart from other plant-breeding textbooks. The basic structure and the objectives of the earlier editions remain un changed. These objectives are (1) to review essential features of plant re production, Mendelian genetic principles, and related genetic developments applicable in plant-breeding practice; (2) to describe and evaluate established and new plant-breeding procedures and techniques, and (3) to discuss plant breeding objectives with emphasis on the importance of proper choice of objec tive for achieving success in variety development. Because plant-breeding activities are normally organized around specific crops, there are chapters describing breeding procedures and objectives for the major crop plants; the crops were chosen for their economic importance or diversity in breeding sys tems. These chapters provide a broad overview of the kinds of problems with which the breeder must cope.
Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.
It is an introductory level textbook a first course in plant breeding. So, the size is limited so that it can be taught in one semester. Horticultural plant breeders. The book is simple, lucid and correct in presentation.
The revised edition of the bestselling textbook, covering both classical and molecular plant breeding Principles of Plant Genetics and Breeding integrates theory and practice to provide an insightful examination of the fundamental principles and advanced techniques of modern plant breeding. Combining both classical and molecular tools, this comprehensive textbook describes the multidisciplinary strategies used to produce new varieties of crops and plants, particularly in response to the increasing demands to of growing populations. Illustrated chapters cover a wide range of topics, including plant reproductive systems, germplasm for breeding, molecular breeding, the common objectives of plant breeders, marketing and societal issues, and more. Now in its third edition, this essential textbook contains extensively revised content that reflects recent advances and current practices. Substantial updates have been made to its molecular genetics and breeding sections, including discussions of new breeding techniques such as zinc finger nuclease, oligonucleotide directed mutagenesis, RNA-dependent DNA methylation, reverse breeding, genome editing, and others. A new table enables efficient comparison of an expanded list of molecular markers, including Allozyme, RFLPs, RAPD, SSR, ISSR, DAMD, AFLP, SNPs and ESTs. Also, new and updated “Industry Highlights” sections provide examples of the practical application of plant breeding methods to real-world problems. This new edition: Organizes topics to reflect the stages of an actual breeding project Incorporates the most recent technologies in the field, such as CRSPR genome edition and grafting on GM stock Includes numerous illustrations and end-of-chapter self-assessment questions, key references, suggested readings, and links to relevant websites Features a companion website containing additional artwork and instructor resources Principles of Plant Genetics and Breeding offers researchers and professionals an invaluable resource and remains the ideal textbook for advanced undergraduates and graduates in plant science, particularly those studying plant breeding, biotechnology, and genetics.