In this introductory book Dr Giblin describes methods that have been developed for testing the primality of numbers, provides Pascal programs for their implementation, and gives applications to coding.
If you know basic high-school math, you can quickly learn and apply the core concepts of computer science with this concise, hands-on book. Led by a team of experts, you’ll quickly understand the difference between computer science and computer programming, and you’ll learn how algorithms help you solve computing problems. Each chapter builds on material introduced earlier in the book, so you can master one core building block before moving on to the next. You’ll explore fundamental topics such as loops, arrays, objects, and classes, using the easy-to-learn Ruby programming language. Then you’ll put everything together in the last chapter by programming a simple game of tic-tac-toe. Learn how to write algorithms to solve real-world problems Understand the basics of computer architecture Examine the basic tools of a programming language Explore sequential, conditional, and loop programming structures Understand how the array data structure organizes storage Use searching techniques and comparison-based sorting algorithms Learn about objects, including how to build your own Discover how objects can be created from other objects Manipulate files and use their data in your software
A highly successful presentation of the fundamental concepts of number theory and computer programming Bridging an existing gap between mathematics and programming, Elementary Number Theory with Programming provides a unique introduction to elementary number theory with fundamental coverage of computer programming. Written by highly-qualified experts in the fields of computer science and mathematics, the book features accessible coverage for readers with various levels of experience and explores number theory in the context of programming without relying on advanced prerequisite knowledge and concepts in either area. Elementary Number Theory with Programming features comprehensive coverage of the methodology and applications of the most well-known theorems, problems, and concepts in number theory. Using standard mathematical applications within the programming field, the book presents modular arithmetic and prime decomposition, which are the basis of the public-private key system of cryptography. In addition, the book includes: Numerous examples, exercises, and research challenges in each chapter to encourage readers to work through the discussed concepts and ideas Select solutions to the chapter exercises in an appendix Plentiful sample computer programs to aid comprehension of the presented material for readers who have either never done any programming or need to improve their existing skill set A related website with links to select exercises An Instructor’s Solutions Manual available on a companion website Elementary Number Theory with Programming is a useful textbook for undergraduate and graduate-level students majoring in mathematics or computer science, as well as an excellent supplement for teachers and students who would like to better understand and appreciate number theory and computer programming. The book is also an ideal reference for computer scientists, programmers, and researchers interested in the mathematical applications of programming.
Beyond Prime Time brings together established television scholars writing new chapters in their areas of expertise that reconsider how programming forms other than prime-time series have been affected by the wide-ranging industrial changes instituted over the past twenty years. The chapters explore the relationship between textual and industrial changes in particular forms such as news, talk, sports, soap operas, syndication, children’s programming, made-for-television movies, public broadcasting, and local programming.
Elements of Programming provides a different understanding of programming than is presented elsewhere. Its major premise is that practical programming, like other areas of science and engineering, must be based on a solid mathematical foundation. This book shows that algorithms implemented in a real programming language, such as C++, can operate in the most general mathematical setting. For example, the fast exponentiation algorithm is defined to work with any associative operation. Using abstract algorithms leads to efficient, reliable, secure, and economical software.
The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015
With the same insight and authority that made their book The Unix Programming Environment a classic, Brian Kernighan and Rob Pike have written The Practice of Programming to help make individual programmers more effective and productive. The practice of programming is more than just writing code. Programmers must also assess tradeoffs, choose among design alternatives, debug and test, improve performance, and maintain software written by themselves and others. At the same time, they must be concerned with issues like compatibility, robustness, and reliability, while meeting specifications. The Practice of Programming covers all these topics, and more. This book is full of practical advice and real-world examples in C, C++, Java, and a variety of special-purpose languages. It includes chapters on: debugging: finding bugs quickly and methodically testing: guaranteeing that software works correctly and reliably performance: making programs faster and more compact portability: ensuring that programs run everywhere without change design: balancing goals and constraints to decide which algorithms and data structures are best interfaces: using abstraction and information hiding to control the interactions between components style: writing code that works well and is a pleasure to read notation: choosing languages and tools that let the machine do more of the work Kernighan and Pike have distilled years of experience writing programs, teaching, and working with other programmers to create this book. Anyone who writes software will profit from the principles and guidance in The Practice of Programming.
This text takes a broad view of multiobjective programming, emphasizing the methods most useful for continuous problems. It reviews methods in the context of public decision-making problems. 1978 edition.
There are several theories of programming. The first usable theory, often called "Hoare's Logic", is still probably the most widely known. In it, a specification is a pair of predicates: a precondition and postcondition (these and all technical terms will be defined in due course). Another popular and closely related theory by Dijkstra uses the weakest precondition predicate transformer, which is a function from programs and postconditions to preconditions. lones's Vienna Development Method has been used to advantage in some industries; in it, a specification is a pair of predicates (as in Hoare's Logic), but the second predicate is a relation. Temporal Logic is yet another formalism that introduces some special operators and quantifiers to describe some aspects of computation. The theory in this book is simpler than any of those just mentioned. In it, a specification is just a boolean expression. Refinement is just ordinary implication. This theory is also more general than those just mentioned, applying to both terminating and nonterminating computation, to both sequential and parallel computation, to both stand-alone and interactive computation. And it includes time bounds, both for algorithm classification and for tightly constrained real-time applications.
A comprehensive introduction to type systems and programming languages. A type system is a syntactic method for automatically checking the absence of certain erroneous behaviors by classifying program phrases according to the kinds of values they compute. The study of type systems—and of programming languages from a type-theoretic perspective—has important applications in software engineering, language design, high-performance compilers, and security. This text provides a comprehensive introduction both to type systems in computer science and to the basic theory of programming languages. The approach is pragmatic and operational; each new concept is motivated by programming examples and the more theoretical sections are driven by the needs of implementations. Each chapter is accompanied by numerous exercises and solutions, as well as a running implementation, available via the Web. Dependencies between chapters are explicitly identified, allowing readers to choose a variety of paths through the material. The core topics include the untyped lambda-calculus, simple type systems, type reconstruction, universal and existential polymorphism, subtyping, bounded quantification, recursive types, kinds, and type operators. Extended case studies develop a variety of approaches to modeling the features of object-oriented languages.