Empirical Asset Pricing

Empirical Asset Pricing

Author: Wayne Ferson

Publisher: MIT Press

Published: 2019-03-12

Total Pages: 497

ISBN-13: 0262039370

DOWNLOAD EBOOK

An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.


Financial Derivatives Pricing: Selected Works Of Robert Jarrow

Financial Derivatives Pricing: Selected Works Of Robert Jarrow

Author: Robert A Jarrow

Publisher: World Scientific

Published: 2008-10-08

Total Pages: 609

ISBN-13: 9814470635

DOWNLOAD EBOOK

This book is a collection of original papers by Robert Jarrow that contributed to significant advances in financial economics. Divided into three parts, Part I concerns option pricing theory and its foundations. The papers here deal with the famous Black-Scholes-Merton model, characterizations of the American put option, and the first applications of arbitrage pricing theory to market manipulation and liquidity risk.Part II relates to pricing derivatives under stochastic interest rates. Included is the paper introducing the famous Heath-Jarrow-Morton (HJM) model, together with papers on topics like the characterization of the difference between forward and futures prices, the forward price martingale measure, and applications of the HJM model to foreign currencies and commodities.Part III deals with the pricing of financial derivatives considering both stochastic interest rates and the likelihood of default. Papers cover the reduced form credit risk model, in particular the original Jarrow and Turnbull model, the Markov model for credit rating transitions, counterparty risk, and diversifiable default risk.


Machine Learning in Finance

Machine Learning in Finance

Author: Matthew F. Dixon

Publisher: Springer Nature

Published: 2020-07-01

Total Pages: 565

ISBN-13: 3030410684

DOWNLOAD EBOOK

This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.


Foundations of Reinforcement Learning with Applications in Finance

Foundations of Reinforcement Learning with Applications in Finance

Author: Ashwin Rao

Publisher: CRC Press

Published: 2022-12-16

Total Pages: 658

ISBN-13: 1000801101

DOWNLOAD EBOOK

Foundations of Reinforcement Learning with Applications in Finance aims to demystify Reinforcement Learning, and to make it a practically useful tool for those studying and working in applied areas — especially finance. Reinforcement Learning is emerging as a powerful technique for solving a variety of complex problems across industries that involve Sequential Optimal Decisioning under Uncertainty. Its penetration in high-profile problems like self-driving cars, robotics, and strategy games points to a future where Reinforcement Learning algorithms will have decisioning abilities far superior to humans. But when it comes getting educated in this area, there seems to be a reluctance to jump right in, because Reinforcement Learning appears to have acquired a reputation for being mysterious and technically challenging. This book strives to impart a lucid and insightful understanding of the topic by emphasizing the foundational mathematics and implementing models and algorithms in well-designed Python code, along with robust coverage of several financial trading problems that can be solved with Reinforcement Learning. This book has been created after years of iterative experimentation on the pedagogy of these topics while being taught to university students as well as industry practitioners. Features Focus on the foundational theory underpinning Reinforcement Learning and software design of the corresponding models and algorithms Suitable as a primary text for courses in Reinforcement Learning, but also as supplementary reading for applied/financial mathematics, programming, and other related courses Suitable for a professional audience of quantitative analysts or data scientists Blends theory/mathematics, programming/algorithms and real-world financial nuances while always striving to maintain simplicity and to build intuitive understanding To access the code base for this book, please go to: https://github.com/TikhonJelvis/RL-book


Theory of Rational Option Pricing

Theory of Rational Option Pricing

Author: Robert C Merton

Publisher: Legare Street Press

Published: 2022-10-27

Total Pages: 0

ISBN-13: 9781015784017

DOWNLOAD EBOOK

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.


Derivatives Analytics with Python

Derivatives Analytics with Python

Author: Yves Hilpisch

Publisher: John Wiley & Sons

Published: 2015-08-03

Total Pages: 390

ISBN-13: 1119037999

DOWNLOAD EBOOK

Supercharge options analytics and hedging using the power of Python Derivatives Analytics with Python shows you how to implement market-consistent valuation and hedging approaches using advanced financial models, efficient numerical techniques, and the powerful capabilities of the Python programming language. This unique guide offers detailed explanations of all theory, methods, and processes, giving you the background and tools necessary to value stock index options from a sound foundation. You'll find and use self-contained Python scripts and modules and learn how to apply Python to advanced data and derivatives analytics as you benefit from the 5,000+ lines of code that are provided to help you reproduce the results and graphics presented. Coverage includes market data analysis, risk-neutral valuation, Monte Carlo simulation, model calibration, valuation, and dynamic hedging, with models that exhibit stochastic volatility, jump components, stochastic short rates, and more. The companion website features all code and IPython Notebooks for immediate execution and automation. Python is gaining ground in the derivatives analytics space, allowing institutions to quickly and efficiently deliver portfolio, trading, and risk management results. This book is the finance professional's guide to exploiting Python's capabilities for efficient and performing derivatives analytics. Reproduce major stylized facts of equity and options markets yourself Apply Fourier transform techniques and advanced Monte Carlo pricing Calibrate advanced option pricing models to market data Integrate advanced models and numeric methods to dynamically hedge options Recent developments in the Python ecosystem enable analysts to implement analytics tasks as performing as with C or C++, but using only about one-tenth of the code or even less. Derivatives Analytics with Python — Data Analysis, Models, Simulation, Calibration and Hedging shows you what you need to know to supercharge your derivatives and risk analytics efforts.


American-Style Derivatives

American-Style Derivatives

Author: Jerome Detemple

Publisher: CRC Press

Published: 2005-12-09

Total Pages: 247

ISBN-13: 1420034863

DOWNLOAD EBOOK

Focusing on recent developments in the field, American-Style Derivatives provides an extensive treatment of option pricing with emphasis on the valuation of American options on dividend-paying assets. This book reviews valuation principles for European contingent claims and extends the analysis to American contingent claims. It presents basic valuation principles for American options including barrier, capped, and multi-asset options. It also reviews numerical methods for option pricing and compares their relative performance. Ideal for students and researchers in quantitative finance, this material is accessible to those with a background in stochastic processes or derivative securities.


A Course in Derivative Securities

A Course in Derivative Securities

Author: Kerry Back

Publisher: Springer Science & Business Media

Published: 2005-10-11

Total Pages: 358

ISBN-13: 3540279008

DOWNLOAD EBOOK

"Deals with pricing and hedging financial derivatives.... Computational methods are introduced and the text contains the Excel VBA routines corresponding to the formulas and procedures described in the book. This is valuable since computer simulation can help readers understand the theory....The book...succeeds in presenting intuitively advanced derivative modelling... it provides a useful bridge between introductory books and the more advanced literature." --MATHEMATICAL REVIEWS


Machine Learning and Data Sciences for Financial Markets

Machine Learning and Data Sciences for Financial Markets

Author: Agostino Capponi

Publisher: Cambridge University Press

Published: 2023-04-30

Total Pages: 743

ISBN-13: 1009034030

DOWNLOAD EBOOK

Leveraging the research efforts of more than sixty experts in the area, this book reviews cutting-edge practices in machine learning for financial markets. Instead of seeing machine learning as a new field, the authors explore the connection between knowledge developed by quantitative finance over the past forty years and techniques generated by the current revolution driven by data sciences and artificial intelligence. The text is structured around three main areas: 'Interactions with investors and asset owners,' which covers robo-advisors and price formation; 'Risk intermediation,' which discusses derivative hedging, portfolio construction, and machine learning for dynamic optimization; and 'Connections with the real economy,' which explores nowcasting, alternative data, and ethics of algorithms. Accessible to a wide audience, this invaluable resource will allow practitioners to include machine learning driven techniques in their day-to-day quantitative practices, while students will build intuition and come to appreciate the technical tools and motivation for the theory.


Recent Advances in Reinforcement Learning

Recent Advances in Reinforcement Learning

Author: Leslie Pack Kaelbling

Publisher: Springer Science & Business Media

Published: 1996-03-31

Total Pages: 286

ISBN-13: 0792397053

DOWNLOAD EBOOK

Recent Advances in Reinforcement Learning addresses current research in an exciting area that is gaining a great deal of popularity in the Artificial Intelligence and Neural Network communities. Reinforcement learning has become a primary paradigm of machine learning. It applies to problems in which an agent (such as a robot, a process controller, or an information-retrieval engine) has to learn how to behave given only information about the success of its current actions. This book is a collection of important papers that address topics including the theoretical foundations of dynamic programming approaches, the role of prior knowledge, and methods for improving performance of reinforcement-learning techniques. These papers build on previous work and will form an important resource for students and researchers in the area. Recent Advances in Reinforcement Learning is an edited volume of peer-reviewed original research comprising twelve invited contributions by leading researchers. This research work has also been published as a special issue of Machine Learning (Volume 22, Numbers 1, 2 and 3).