Empirical Asset Pricing

Empirical Asset Pricing

Author: Wayne Ferson

Publisher: MIT Press

Published: 2019-03-12

Total Pages: 497

ISBN-13: 0262039370

DOWNLOAD EBOOK

An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.


Granular, Fuzzy, and Soft Computing

Granular, Fuzzy, and Soft Computing

Author: Tsau-Young Lin

Publisher: Springer Nature

Published: 2023-03-29

Total Pages: 936

ISBN-13: 1071626280

DOWNLOAD EBOOK

The first edition of the Encyclopedia of Complexity and Systems Science (ECSS, 2009) presented a comprehensive overview of granular computing (GrC) broadly divided into several categories: Granular computing from rough set theory, Granular Computing in Database Theory, Granular Computing in Social Networks, Granular Computing and Fuzzy Set Theory, Grid/Cloud Computing, as well as general issues in granular computing. In 2011, the formal theory of GrC was established, providing an adequate infrastructure to support revolutionary new approaches to computer/data science, including the challenges presented by so-called big data. For this volume of ECSS, Second Edition, many entries have been updated to capture these new developments, together with new chapters on such topics as data clustering, outliers in data mining, qualitative fuzzy sets, and information flow analysis for security applications. Granulations can be seen as a natural and ancient methodology deeply rooted in the human mind. Many daily "things" are routinely granulated into sub "things": The topography of earth is granulated into hills, plateaus, etc., space and time are granulated into infinitesimal granules, and a circle is granulated into polygons of infinitesimal sides. Such granules led to the invention of calculus, topology and non-standard analysis. Formalization of general granulation was difficult but, as shown in this volume, great progress has been made in combing discrete and continuous mathematics under one roof for a broad range of applications in data science.


A Practical Guide to Forecasting Financial Market Volatility

A Practical Guide to Forecasting Financial Market Volatility

Author: Ser-Huang Poon

Publisher: John Wiley & Sons

Published: 2005-08-19

Total Pages: 236

ISBN-13: 0470856157

DOWNLOAD EBOOK

Financial market volatility forecasting is one of today's most important areas of expertise for professionals and academics in investment, option pricing, and financial market regulation. While many books address financial market modelling, no single book is devoted primarily to the exploration of volatility forecasting and the practical use of forecasting models. A Practical Guide to Forecasting Financial Market Volatility provides practical guidance on this vital topic through an in-depth examination of a range of popular forecasting models. Details are provided on proven techniques for building volatility models, with guide-lines for actually using them in forecasting applications.


How can I get started Investing in the Stock Market

How can I get started Investing in the Stock Market

Author: Lokesh Badolia

Publisher: Educreation Publishing

Published: 2016-10-27

Total Pages: 63

ISBN-13:

DOWNLOAD EBOOK

This book is well-researched by the author, in which he has shared the experience and knowledge of some very much experienced and renowned entities from stock market. We want that everybody should have the knowledge regarding the different aspects of stock market, which would encourage people to invest and earn without any fear. This book is just a step forward toward the knowledge of market.


Quantifying Systemic Risk

Quantifying Systemic Risk

Author: Joseph G. Haubrich

Publisher: University of Chicago Press

Published: 2013-01-24

Total Pages: 286

ISBN-13: 0226319288

DOWNLOAD EBOOK

In the aftermath of the recent financial crisis, the federal government has pursued significant regulatory reforms, including proposals to measure and monitor systemic risk. However, there is much debate about how this might be accomplished quantitatively and objectively—or whether this is even possible. A key issue is determining the appropriate trade-offs between risk and reward from a policy and social welfare perspective given the potential negative impact of crises. One of the first books to address the challenges of measuring statistical risk from a system-wide persepective, Quantifying Systemic Risk looks at the means of measuring systemic risk and explores alternative approaches. Among the topics discussed are the challenges of tying regulations to specific quantitative measures, the effects of learning and adaptation on the evolution of the market, and the distinction between the shocks that start a crisis and the mechanisms that enable it to grow.


Introduction to Financial Forecasting in Investment Analysis

Introduction to Financial Forecasting in Investment Analysis

Author: John B. Guerard, Jr.

Publisher: Springer Science & Business Media

Published: 2013-01-04

Total Pages: 245

ISBN-13: 1461452392

DOWNLOAD EBOOK

Forecasting—the art and science of predicting future outcomes—has become a crucial skill in business and economic analysis. This volume introduces the reader to the tools, methods, and techniques of forecasting, specifically as they apply to financial and investing decisions. With an emphasis on "earnings per share" (eps), the author presents a data-oriented text on financial forecasting, understanding financial data, assessing firm financial strategies (such as share buybacks and R&D spending), creating efficient portfolios, and hedging stock portfolios with financial futures. The opening chapters explain how to understand economic fluctuations and how the stock market leads the general economic trend; introduce the concept of portfolio construction and how movements in the economy influence stock price movements; and introduce the reader to the forecasting process, including exponential smoothing and time series model estimations. Subsequent chapters examine the composite index of leading economic indicators (LEI); review financial statement analysis and mean-variance efficient portfolios; and assess the effectiveness of analysts’ earnings forecasts. Using data from such firms as Intel, General Electric, and Hitachi, Guerard demonstrates how forecasting tools can be applied to understand the business cycle, evaluate market risk, and demonstrate the impact of global stock selection modeling and portfolio construction.


Machine Learning in Asset Pricing

Machine Learning in Asset Pricing

Author: Stefan Nagel

Publisher: Princeton University Press

Published: 2021-05-11

Total Pages: 156

ISBN-13: 0691218706

DOWNLOAD EBOOK

A groundbreaking, authoritative introduction to how machine learning can be applied to asset pricing Investors in financial markets are faced with an abundance of potentially value-relevant information from a wide variety of different sources. In such data-rich, high-dimensional environments, techniques from the rapidly advancing field of machine learning (ML) are well-suited for solving prediction problems. Accordingly, ML methods are quickly becoming part of the toolkit in asset pricing research and quantitative investing. In this book, Stefan Nagel examines the promises and challenges of ML applications in asset pricing. Asset pricing problems are substantially different from the settings for which ML tools were developed originally. To realize the potential of ML methods, they must be adapted for the specific conditions in asset pricing applications. Economic considerations, such as portfolio optimization, absence of near arbitrage, and investor learning can guide the selection and modification of ML tools. Beginning with a brief survey of basic supervised ML methods, Nagel then discusses the application of these techniques in empirical research in asset pricing and shows how they promise to advance the theoretical modeling of financial markets. Machine Learning in Asset Pricing presents the exciting possibilities of using cutting-edge methods in research on financial asset valuation.


Deep Learning Architectures

Deep Learning Architectures

Author: Ovidiu Calin

Publisher: Springer Nature

Published: 2020-02-13

Total Pages: 760

ISBN-13: 3030367215

DOWNLOAD EBOOK

This book describes how neural networks operate from the mathematical point of view. As a result, neural networks can be interpreted both as function universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegance of the latter. This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates. In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject.