The Stress Analysis of Pressure Vessels and Pressure Vessel Components

The Stress Analysis of Pressure Vessels and Pressure Vessel Components

Author: Samuel Sidney Gill

Publisher: Pergamon

Published: 1970

Total Pages: 614

ISBN-13:

DOWNLOAD EBOOK

The Stress Analysis of Pressure Vessels and Pressure Vessel Components, Volume 3 deals with the basic principles and concepts underlying stress analysis of pressure vessels and related components used in the nuclear energy industry. Among the components subjected to stress analysis are pressure vessel branches, pressure vessel ends, local attachments, and flanges. Smooth and mitered pipe bends, externally pressurized vessels, and creep effects in structures are also analyzed. This book is comprised of 11 chapters that explore the main problems of structural analysis related to the design of me.


Pressure Vessel Design Manual

Pressure Vessel Design Manual

Author: Dennis R. Moss

Publisher: Butterworth-Heinemann

Published: 2012-12-31

Total Pages: 825

ISBN-13: 0123870011

DOWNLOAD EBOOK

Pressure vessels are closed containers designed to hold gases or liquids at a pressure substantially different from the ambient pressure. They have a variety of applications in industry, including in oil refineries, nuclear reactors, vehicle airbrake reservoirs, and more. The pressure differential with such vessels is dangerous, and due to the risk of accident and fatality around their use, the design, manufacture, operation and inspection of pressure vessels is regulated by engineering authorities and guided by legal codes and standards. Pressure Vessel Design Manual is a solutions-focused guide to the many problems and technical challenges involved in the design of pressure vessels to match stringent standards and codes. It brings together otherwise scattered information and explanations into one easy-to-use resource to minimize research and take readers from problem to solution in the most direct manner possible. - Covers almost all problems that a working pressure vessel designer can expect to face, with 50+ step-by-step design procedures including a wealth of equations, explanations and data - Internationally recognized, widely referenced and trusted, with 20+ years of use in over 30 countries making it an accepted industry standard guide - Now revised with up-to-date ASME, ASCE and API regulatory code information, and dual unit coverage for increased ease of international use


Mechanical Design of Heat Exchangers

Mechanical Design of Heat Exchangers

Author: Krishna P. Singh

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 1054

ISBN-13: 3662124416

DOWNLOAD EBOOK

A tubular heat exchanger exemplifies many aspects of the challenge in designing a pressure vessel. High or very low operating pressures and temperatures, combined with sharp temperature gradients, and large differences in the stiffnesses of adjoining parts, are amongst the legion of conditions that behoove the attention of the heat exchanger designer. Pitfalls in mechanical design may lead to a variety of operational problems, such as tube-to-tubesheet joint failure, flanged joint leakage, weld cracks, tube buckling, and flow induced vibration. Internal failures, such as pass partition bowing or weld rip-out, pass partition gasket rib blow-out, and impingement actuated tube end erosion are no less menacing. Designing to avoid such operational perils requires a thorough grounding in several disciplines of mechanics, and a broad understanding of the inter relationship between the thermal and mechanical performance of heat exchangers. Yet, while there are a number of excellent books on heat ex changer thermal design, comparable effort in mechanical design has been non-existent. This apparent void has been filled by an assortment of national codes and industry standards, notably the "ASME Boiler and Pressure Vessel Code" and the "Standards of Tubular Exchanger Manufacturers Association. " These documents, in conjunction with scattered publications, form the motley compendia of the heat exchanger designer's reference source. The subject matter clearly beckons a methodical and comprehensive treatment. This book is directed towards meeting this need.


Pressure Vessels

Pressure Vessels

Author: Somnath Chattopadhyay

Publisher: CRC Press

Published: 2004-10-28

Total Pages: 200

ISBN-13: 0203492463

DOWNLOAD EBOOK

With very few books adequately addressing ASME Boiler & Pressure Vessel Code, and other international code issues, Pressure Vessels: Design and Practice provides a comprehensive, in-depth guide on everything engineers need to know. With emphasis on the requirements of the ASME this consummate work examines the design of pressure vessel com


Structural Analysis and Design of Process Equipment

Structural Analysis and Design of Process Equipment

Author: Maan H. Jawad

Publisher: John Wiley & Sons

Published: 2018-06-22

Total Pages: 1105

ISBN-13: 1119311527

DOWNLOAD EBOOK

Still the only book offering comprehensive coverage of the analysis and design of both API equipment and ASME pressure vessels This edition of the classic guide to the analysis and design of process equipment has been thoroughly updated to reflect current practices as well as the latest ASME Codes and API standards. In addition to covering the code requirements governing the design of process equipment, the book supplies structural, mechanical, and chemical engineers with expert guidance to the analysis and design of storage tanks, pressure vessels, boilers, heat exchangers, and related process equipment and its associated external and internal components. The use of process equipment, such as storage tanks, pressure vessels, and heat exchangers has expanded considerably over the last few decades in both the petroleum and chemical industries. The extremely high pressures and temperatures involved with the processes for which the equipment is designed makes it potentially very dangerous to property and life if the equipment is not designed and manufactured to an exacting standard. Accordingly, codes and standards such as the ASME and API were written to assure safety. Still the only guide covering the design of both API equipment and ASME pressure vessels, Structural Analysis and Design of Process Equipment, 3rd Edition: Covers the design of rectangular vessels with various side thicknesses and updated equations for the design of heat exchangers Now includes numerical vibration analysis needed for earthquake evaluation Relates the requirements of the ASME codes to international standards Describes, in detail, the background and assumptions made in deriving many design equations underpinning the ASME and API standards Includes methods for designing components that are not covered in either the API or ASME, including ring girders, leg supports, and internal components Contains procedures for calculating thermal stresses and discontinuity analysis of various components Structural Analysis and Design of Process Equipment, 3rd Edition is an indispensable tool-of-the-trade for mechanical engineers and chemical engineers working in the petroleum and chemical industries, manufacturing, as well as plant engineers in need of a reference for process equipment in power plants, petrochemical facilities, and nuclear facilities.


Design of Pressure Vessels

Design of Pressure Vessels

Author: Subhash Reddy Gaddam

Publisher: CRC Press

Published: 2020-12-17

Total Pages: 251

ISBN-13: 1000318079

DOWNLOAD EBOOK

Simplifies pressure vessels design based on the current ASME codes Explains design topics of non-coded parts to calculate the stresses for any type of arrangement Covers failure analysis related to elements of pressure vessels Provides backend of design software and codes useful to designers Describes the equations by simple fundamental design methods and calculations required for preparing manufacturing drawings


Design & Analysis

Design & Analysis

Author: Liu Cengdian

Publisher: Elsevier

Published: 2013-10-02

Total Pages: 750

ISBN-13: 9781483284309

DOWNLOAD EBOOK

Pressure Vessel Technology, Volume 1: Design and Analysis is a collection of papers presented at the Sixth International Conference on Pressure Vessel Technology, held in Beijing, People's Republic of China on September 11-15, 1988. This conference presents the practical applications in pressure vessel technology, specifically the developments and research, as well as contributions from prominent specialists from many different countries related to their design, materials, fabrication, and methods of inspection. This volume is divided into 61 chapters and begins with a presentation of guidelines and design criteria for various pressure vessel components, such as the nuclear, piping, and boiler components. The succeeding chapters deal with the features and practical application of the seismic design criteria, the issues of vibration, instabilities, damping, and flows. These topics are followed by discussions of the application of the discrete vortex method to flow over structures; tests and analysis of sealing characteristics; the properties of flange, gaskets, and heat exchangers; and stress analysis experiments. This work also includes papers on thermal stress tests, elastoplastic and deformation analysis, crack stability, and the application of computer for automation in analysis. The remaining chapters survey some international design standards of pressure vessels. This book will prove useful to mechanical and design engineers.


Analysis of ASME Boiler, Pressure Vessel, and Nuclear Components in the Creep Range

Analysis of ASME Boiler, Pressure Vessel, and Nuclear Components in the Creep Range

Author: Maan H. Jawad

Publisher: John Wiley & Sons

Published: 2022-09-14

Total Pages: 404

ISBN-13: 111967946X

DOWNLOAD EBOOK

Analysis of ASME Boiler, Pressure Vessel, and Nuclear Components in the Creep Range Second Edition The latest edition of the leading resource on elevated temperature design In the newly revised Second Edition of Analysis of ASME Boiler, Pressure Vessel, and Nuclear Components in the Creep Range, a team of distinguished engineers delivers an authoritative introduction to the principles of design at elevated temperatures. The authors draw on over 50 years of experience, explaining the methodology for accomplishing a safe and economical design for boiler and pressure vessel components operating at high temperatures. The text includes extensive references, offering the reader the opportunity to further their understanding of the subject. In this latest edition, each chapter has been updated and two brand-new chapters added—the first is Creep Analysis Using the Remaining Life Method, and the second is Requirements for Nuclear Components. Numerous examples are included to illustrate the practical application of the presented design and analysis methods. It also offers: A thorough introduction to creep-fatigue analysis of pressure vessel components using the concept of load-controlled and strain-deformation controlled limits An introduction to the creep requirements in API 579/ASME FFS-1 “Remaining Life Method” A summary of creep-fatigue analysis requirements in nuclear components Detailed procedure for designing cylindrical and spherical components of boilers and pressure vessels due to axial and external pressure in the creep regime A section on using finite element analysis to approximate fatigue in structural members in tension and bending Perfect for mechanical engineers and researchers working in mechanical engineering, Analysis of ASME Boiler, Pressure Vessel, and Nuclear Components in the Creep Range will also earn a place in the libraries of graduate students studying mechanical engineering, technical staff in industry, and industry analysts and researchers.