This text explores the optimization of catalytic materials through traditional and novel methods of catalyst preparation, characterization, and monitoring for oxides, supported metals, zeolites, and heteropolyacids. It focuses on the synthesis of bulk materials and of heterogeneous materials, particularly at the nanoscale. The final chapters examine pretreatment, drying, finishing effects, and future applications involving catalyst preparation and the technological advances necessary for continued progress. Topics also include heat and mass transfer limitations, computation methods for predicting properties, and catalyst monitoring on laboratory and industrial scales.
Solid catalysts play a fundamental role in all areas between basic research and industrial applications. This book offers a large amount of information about the preparation of solid catalysts. All types of solid catalysts and all important aspects of their preparation are discussed. The highly topical contributions are written by leading experts in disciplines ranging from solid state, interface and solution chemistry to industrial engineering. The straightforward presentation of the material and the comprehensive coverage make this book an essential and indispensible tool for every scientist and engineer working with solid catalysts.
Studies in Surface Science and Catalysis is one of the oldest and most cited series in the field. It offers a privileged view of the topic covering the theory, applications and engineering of all topics of catalysis, including Heterogeneous-Homogeneous, Biocatalysis and Catalysis for Polymerization. This volume provides an invaluable source of information for academics and industrialists as well as graduate students.
This practical book combines recent progress with a discussion of the general aspects of catalyst preparation. The first part deals with the basic principles of solid catalyst preparation, explaining the main aspects of sol-gel chemistry and interfacial chemistry, followed by such techniques as co-precipitation and immobilization. New tools for catalyst preparation research, including microspectroscopy and high-throughput experimentation, are also taken into account. The second part heightens the practical relevance by providing six case studies on such topics as the preparation of zeolites, hydrotreating catalysts, methanol catalysts and gold catalysts
The proceedings of the VIIth International Symposium on the Scientific Bases for the Preparation of Heterogeneous Catalysts, are in line with the general scope of this series of events. Emphasis in all Symposia has been on the scientific aspects of the preparation of new and industrial catalysts, or on new methods of preparation, rather than on the catalytic reactions in which such solids are ultimately used. In the present context, the catalytic event itself has only been considered as another, though often decisive, method of catalyst characterization.
Written by a team of internationally recognized experts, this book addresses the most important types of catalytic reactions and catalysts as used in industrial practice. Both applied aspects and the essential scientific principles are described. The main topics can be summarized as follows: heterogeneous, homogeneous and biocatalysis, catalyst preparation and characterization, catalytic reaction engineering and kinetics, catalyst deactivation and industrial perspective.
It has become a tradition that every four years, the Université Catholique de Louvain and the Katholieke Universiteit Leuven jointly organize a symposium devoted to the scientific bases for the preparation of heterogeneous catalysts. These meetings bring together researchers from academia and industry and offer a forum for discussions on the chemistry involved in the preparation of industrial heterogeneous catalysts. This volume containing the Proceedings of the 8th International Symposium on Scientific Bases for the Preparation of Heterogeneous Catalysts consists of papers summarizing most of the 139 oral communications and posters selected by the international scientific committee, composed of 27 experts in the field of catalyst preparation, holding an industrial or academia appointment.The contributions focus on the aspects of catalyst preparation. The main topics are: new approaches in catalyst preparation; advanced preparations of nanoporous and mesoporous catalysts; catalysts preparation for special performances and purposes; catalysts for environmental purposes; and molecular catalysis. Emphasis is put on the role that catalysis can play as an essential element of sustainable development.
Heterogeneous Catalysis in Sustainable Synthesis is a practical guide to the use of solid catalysts in synthetic chemistry that focuses on environmentally benign applications. Collating essential information on solid catalysts into a single volume, it reveals how the efficient use of heterogeneous catalysts in synthetic chemistry can support sustainable applications. Beginning with a review of the fundamentals of heterogeneous catalytic synthesis, the book then explores the basic concepts of heterogeneous catalytic reactions from adsorption to catalyst poisons, the use of non-traditional activation methods, recommended solvents, the major types of both metal and non-metal solid catalysts, and applications of these catalysts in sustainable synthesis. Based on the extensive experience of its expert author, this book aims to encourage and support synthetic chemists in using solid catalysts in their own work, while also highlighting the important link between heterogeneous catalysis and sustainability to all those interested. - Combines foundational knowledge with a focus on practical applications - Organizes information by reaction type, allowing readers to easily find examples of how to carry out specific reaction types with solid catalysts - Highlights emerging areas such as nanoparticle catalysis and metal-organic framework (MOF) based catalysts
Presents state-of-the-art knowledge of heterogeneous catalysts including new applications in energy and environmental fields This book focuses on emerging techniques in heterogeneous catalysis, from new methodology for catalysts design and synthesis, surface studies and operando spectroscopies, ab initio techniques, to critical catalytic systems as relevant to energy and the environment. It provides the vision of addressing the foreseeable knowledge gap unfilled by classical knowledge in the field. Heterogeneous Catalysts: Advanced Design, Characterization and Applications begins with an overview on the evolution in catalysts synthesis and introduces readers to facets engineering on catalysts; electrochemical synthesis of nanostructured catalytic thin films; and bandgap engineering of semiconductor photocatalysts. Next, it examines how we are gaining a more precise understanding of catalytic events and materials under working conditions. It covers bridging pressure gap in surface catalytic studies; tomography in catalysts design; and resolving catalyst performance at nanoscale via fluorescence microscopy. Quantum approaches to predicting molecular reactions on catalytic surfaces follows that, along with chapters on Density Functional Theory in heterogeneous catalysis; first principles simulation of electrified interfaces in electrochemistry; and high-throughput computational design of novel catalytic materials. The book also discusses embracing the energy and environmental challenges of the 21st century through heterogeneous catalysis and much more. Presents recent developments in heterogeneous catalysis with emphasis on new fundamentals and emerging techniques Offers a comprehensive look at the important aspects of heterogeneous catalysis Provides an applications-oriented, bottoms-up approach to a high-interest subject that plays a vital role in industry and is widely applied in areas related to energy and environment Heterogeneous Catalysts: Advanced Design, Characterization and Applications is an important book for catalytic chemists, materials scientists, surface chemists, physical chemists, inorganic chemists, chemical engineers, and other professionals working in the chemical industry.
This work provides a practical, step-by-step guide to the preparation, production and operation of all commercially used catalysts, taking into account general safety considerations and up-to-date regulations from the Occupational Health Administration and the Environmental Protection Agency. This second edition contains updated and expanded material on the regeneration, reactivity and recovery of used catalysts; problems related to environmental catalysis; a unique CO oxidation catalyst; and more.;This work is intended for chemical, plant, automotive, petroleum, fuel and design engineers; and upper-level graduate and graduate students in these disciplines.