Prelis procedures - General instructions for the problem rum - Prelis commands - Examples and exercises : Warnings and error messages - New features in Prelis 2 - Simulation with Prelis 2 and Prelis 8.
This edited volume features cutting-edge topics from the leading researchers in the areas of latent variable modeling. Content highlights include coverage of approaches dealing with missing values, semi-parametric estimation, robust analysis, hierarchical data, factor scores, multi-group analysis, and model testing. New methodological topics are illustrated with real applications. The material presented brings together two traditions: psychometrics and structural equation modeling. Latent Variable and Latent Structure Models' thought-provoking chapters from the leading researchers in the area will help to stimulate ideas for further research for many years to come. This volume will be of interest to researchers and practitioners from a wide variety of disciplines, including biology, business, economics, education, medicine, psychology, sociology, and other social and behavioral sciences. A working knowledge of basic multivariate statistics and measurement theory is assumed.
Tourism Marketing: A Strategic Approach presents a variety of practical application tools, skills, practices, models, approaches, and strategies that are proving themselves effective in tourism marketing. The volume considers overall infrastructure, socioeconomic conditions, and modern tourism business infrastructure in discussing the efficiency of good strategies and practices and their impact on business and economic growth. Tourism is one of the fastest growing industries, and in the next few decades, it will play a role in many fields, such human resources, national economic growth, and more.
This accessible book has established itself as the go-to resource on confirmatory factor analysis (CFA) for its emphasis on practical and conceptual aspects rather than mathematics or formulas. Detailed, worked-through examples drawn from psychology, management, and sociology studies illustrate the procedures, pitfalls, and extensions of CFA methodology. The text shows how to formulate, program, and interpret CFA models using popular latent variable software packages (LISREL, Mplus, EQS, SAS/CALIS); understand the similarities ...
With its emphasis on practical and conceptual aspects, rather than mathematics or formulas, this accessible book has established itself as the go-to resource on confirmatory factor analysis (CFA). Detailed, worked-through examples drawn from psychology, management, and sociology studies illustrate the procedures, pitfalls, and extensions of CFA methodology. The text shows how to formulate, program, and interpret CFA models using popular latent variable software packages (LISREL, Mplus, EQS, SAS/CALIS); understand the similarities and differences between CFA and exploratory factor analysis (EFA); and report results from a CFA study. It is filled with useful advice and tables that outline the procedures. The companion website (www.guilford.com/brown3-materials) offers data and program syntax files for most of the research examples, as well as links to CFA-related resources. New to This Edition *Updated throughout to incorporate important developments in latent variable modeling. *Chapter on Bayesian CFA and multilevel measurement models. *Addresses new topics (with examples): exploratory structural equation modeling, bifactor analysis, measurement invariance evaluation with categorical indicators, and a new method for scaling latent variables. *Utilizes the latest versions of major latent variable software packages.
Richard A. Swanson and Elwood F. Holton, leading scholars in the field, bring together contributions from more than twenty distinguished researchers from multiple disciplines to provide a comprehensive introductory textbook on organizational research. Designed for use by professors and students in graduate-level programs in business, management, organizational leadership, and human resource development, Research in Organizations teaches how to apply a range of methodolgies to the study of organizations. This comprehensive guide covers the theoretical foundations of various research methods, shows how to apply those methods in organizational settings, and examines the ethical conduct of research. It provides a holistic perspective, embracing quantitative, qualitative, and mixed-methodology approaches and illuminating them through numerous illustrative examples.
Grounded in current knowledge and professional practice, this book provides up-to-date coverage of psychometric theory, methods, and interpretation of results. Essential topics include measurement and statistical concepts, scaling models, test design and development, reliability, validity, factor analysis, item response theory, and generalizability theory. Also addressed are norming and test equating, topics not typically covered in traditional psychometrics texts. Examples drawn from a dataset on intelligence testing are used throughout the book, elucidating the assumptions underlying particular methods and providing SPSS (or alternative) syntax for conducting analyses. The companion website presents datasets for all examples as well as PowerPoint slides of figures and key concepts. Pedagogical features include equation boxes with explanations of statistical notation, and end-of-chapter glossaries. The Appendix offers extensions of the topical chapters with example source code from SAS, SPSS, IRTPRO, BILOG-MG, PARSCALE, TESTFACT, and DIMTEST.
This Handbook covers latent variable models, which are a flexible class of models for modeling multivariate data to explore relationships among observed and latent variables. - Covers a wide class of important models - Models and statistical methods described provide tools for analyzing a wide spectrum of complicated data - Includes illustrative examples with real data sets from business, education, medicine, public health and sociology. - Demonstrates the use of a wide variety of statistical, computational, and mathematical techniques.
This book provides a broad overview of basic multilevel modeling issues and illustrates techniques building analyses around several organizational data sets. Although the focus is primarily on educational and organizational settings, the examples will help the reader discover other applications for these techniques. Two basic classes of multilevel models are developed: multilevel regression models and multilevel models for covariance structures--are used to develop the rationale behind these models and provide an introduction to the design and analysis of research studies using two multilevel analytic techniques--hierarchical linear modeling and structural equation modeling.