Applied Econometrics with R

Applied Econometrics with R

Author: Christian Kleiber

Publisher: Springer Science & Business Media

Published: 2008-12-10

Total Pages: 229

ISBN-13: 0387773185

DOWNLOAD EBOOK

R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.


Panel Data Econometrics with R

Panel Data Econometrics with R

Author: Yves Croissant

Publisher: John Wiley & Sons

Published: 2018-08-10

Total Pages: 435

ISBN-13: 1118949188

DOWNLOAD EBOOK

Panel Data Econometrics with R provides a tutorial for using R in the field of panel data econometrics. Illustrated throughout with examples in econometrics, political science, agriculture and epidemiology, this book presents classic methodology and applications as well as more advanced topics and recent developments in this field including error component models, spatial panels and dynamic models. They have developed the software programming in R and host replicable material on the book’s accompanying website.


Using R for Principles of Econometrics

Using R for Principles of Econometrics

Author: Constantin Colonescu

Publisher: Lulu.com

Published: 2017-12-28

Total Pages: 278

ISBN-13: 1387473611

DOWNLOAD EBOOK

This is a beginner's guide to applied econometrics using the free statistics software R. It provides and explains R solutions to most of the examples in 'Principles of Econometrics' by Hill, Griffiths, and Lim, fourth edition. 'Using R for Principles of Econometrics' requires no previous knowledge in econometrics or R programming, but elementary notions of statistics are helpful.


The SAGE Handbook of Regression Analysis and Causal Inference

The SAGE Handbook of Regression Analysis and Causal Inference

Author: Henning Best

Publisher: SAGE

Published: 2013-12-20

Total Pages: 425

ISBN-13: 1473908353

DOWNLOAD EBOOK

′The editors of the new SAGE Handbook of Regression Analysis and Causal Inference have assembled a wide-ranging, high-quality, and timely collection of articles on topics of central importance to quantitative social research, many written by leaders in the field. Everyone engaged in statistical analysis of social-science data will find something of interest in this book.′ - John Fox, Professor, Department of Sociology, McMaster University ′The authors do a great job in explaining the various statistical methods in a clear and simple way - focussing on fundamental understanding, interpretation of results, and practical application - yet being precise in their exposition.′ - Ben Jann, Executive Director, Institute of Sociology, University of Bern ′Best and Wolf have put together a powerful collection, especially valuable in its separate discussions of uses for both cross-sectional and panel data analysis.′ -Tom Smith, Senior Fellow, NORC, University of Chicago Edited and written by a team of leading international social scientists, this Handbook provides a comprehensive introduction to multivariate methods. The Handbook focuses on regression analysis of cross-sectional and longitudinal data with an emphasis on causal analysis, thereby covering a large number of different techniques including selection models, complex samples, and regression discontinuities. Each Part starts with a non-mathematical introduction to the method covered in that section, giving readers a basic knowledge of the method’s logic, scope and unique features. Next, the mathematical and statistical basis of each method is presented along with advanced aspects. Using real-world data from the European Social Survey (ESS) and the Socio-Economic Panel (GSOEP), the book provides a comprehensive discussion of each method’s application, making this an ideal text for PhD students and researchers embarking on their own data analysis.


Longitudinal and Panel Data

Longitudinal and Panel Data

Author: Edward W. Frees

Publisher: Cambridge University Press

Published: 2004-08-16

Total Pages: 492

ISBN-13: 9780521535380

DOWNLOAD EBOOK

An introduction to foundations and applications for quantitatively oriented graduate social-science students and individual researchers.


Handbook of Economic Forecasting

Handbook of Economic Forecasting

Author: Graham Elliott

Publisher: Elsevier

Published: 2013-08-23

Total Pages: 667

ISBN-13: 0444627405

DOWNLOAD EBOOK

The highly prized ability to make financial plans with some certainty about the future comes from the core fields of economics. In recent years the availability of more data, analytical tools of greater precision, and ex post studies of business decisions have increased demand for information about economic forecasting. Volumes 2A and 2B, which follows Nobel laureate Clive Granger's Volume 1 (2006), concentrate on two major subjects. Volume 2A covers innovations in methodologies, specifically macroforecasting and forecasting financial variables. Volume 2B investigates commercial applications, with sections on forecasters' objectives and methodologies. Experts provide surveys of a large range of literature scattered across applied and theoretical statistics journals as well as econometrics and empirical economics journals. The Handbook of Economic Forecasting Volumes 2A and 2B provide a unique compilation of chapters giving a coherent overview of forecasting theory and applications in one place and with up-to-date accounts of all major conceptual issues. - Focuses on innovation in economic forecasting via industry applications - Presents coherent summaries of subjects in economic forecasting that stretch from methodologies to applications - Makes details about economic forecasting accessible to scholars in fields outside economics


Regression Basics

Regression Basics

Author: Leo H. Kahane

Publisher: SAGE Publications

Published: 2007-11-28

Total Pages: 241

ISBN-13: 1483317102

DOWNLOAD EBOOK

Using a friendly, nontechnical approach, the Second Edition of Regression Basics introduces readers to the fundamentals of regression. Accessible to anyone with an introductory statistics background, this book builds from a simple two-variable model to a model of greater complexity. Author Leo H. Kahane weaves four engaging examples throughout the text to illustrate not only the techniques of regression but also how this empirical tool can be applied in creative ways to consider a broad array of topics. New to the Second Edition • Offers greater coverage of simple panel-data estimation: Because the availability of panel data has increased over the past decade, this new edition includes coverage of estimation with multiple cross-sections of data across time. • Provides an introductory discussion of omitted variables bias: As a problem that frequently arises, this issue is important for those new to regression analysis to understand. • Includes up-to-date advances: Chapter 7 is expanded to include recent developments in regression. • Uses a diverse selection of examples: Engaging examples illustrate the wide application of regression analysis from baseball salaries to presidential voting to British crime rates to U.S. abortion rates and more. • Includes more end-of-chapter problems: This edition offers new questions at the end of chapters that are based on the new examples woven through the book. • Illustrates examples using software programs: Appendix B now includes screenshots to further aid readers working with Microsoft Excel® and SPSS. Intended Audience This is an ideal core or supplemental text for advanced undergraduate and graduate courses such as Regression and Correlation, Sociological Research Methods, Quantitative Research Methods, and Statistical Methods in the fields of economics, public policy, political science, sociology, public affairs, urban planning, education, and geography.


Econometric Analysis of Cross Section and Panel Data, second edition

Econometric Analysis of Cross Section and Panel Data, second edition

Author: Jeffrey M. Wooldridge

Publisher: MIT Press

Published: 2010-10-01

Total Pages: 1095

ISBN-13: 0262232588

DOWNLOAD EBOOK

The second edition of a comprehensive state-of-the-art graduate level text on microeconometric methods, substantially revised and updated. The second edition of this acclaimed graduate text provides a unified treatment of two methods used in contemporary econometric research, cross section and data panel methods. By focusing on assumptions that can be given behavioral content, the book maintains an appropriate level of rigor while emphasizing intuitive thinking. The analysis covers both linear and nonlinear models, including models with dynamics and/or individual heterogeneity. In addition to general estimation frameworks (particular methods of moments and maximum likelihood), specific linear and nonlinear methods are covered in detail, including probit and logit models and their multivariate, Tobit models, models for count data, censored and missing data schemes, causal (or treatment) effects, and duration analysis. Econometric Analysis of Cross Section and Panel Data was the first graduate econometrics text to focus on microeconomic data structures, allowing assumptions to be separated into population and sampling assumptions. This second edition has been substantially updated and revised. Improvements include a broader class of models for missing data problems; more detailed treatment of cluster problems, an important topic for empirical researchers; expanded discussion of "generalized instrumental variables" (GIV) estimation; new coverage (based on the author's own recent research) of inverse probability weighting; a more complete framework for estimating treatment effects with panel data, and a firmly established link between econometric approaches to nonlinear panel data and the "generalized estimating equation" literature popular in statistics and other fields. New attention is given to explaining when particular econometric methods can be applied; the goal is not only to tell readers what does work, but why certain "obvious" procedures do not. The numerous included exercises, both theoretical and computer-based, allow the reader to extend methods covered in the text and discover new insights.


Analysis of Panels and Limited Dependent Variable Models

Analysis of Panels and Limited Dependent Variable Models

Author: Cheng Hsiao

Publisher: Cambridge University Press

Published: 1999-07-29

Total Pages: 352

ISBN-13: 113943134X

DOWNLOAD EBOOK

This important collection brings together leading econometricians to discuss advances in the areas of the econometrics of panel data. The papers in this collection can be grouped into two categories. The first, which includes chapters by Amemiya, Baltagi, Arellano, Bover and Labeaga, primarily deal with different aspects of limited dependent variables and sample selectivity. The second group of papers, including those by Nerlove, Schmidt and Ahn, Kiviet, Davies and Lahiri, consider issues that arise in the estimation of dyanamic (possibly) heterogeneous panel data models. Overall, the contributors focus on the issues of simplifying complex real-world phenomena into easily generalisable inferences from individual outcomes. As the contributions of G. S. Maddala in the fields of limited dependent variables and panel data were particularly influential, it is a fitting tribute that this volume is dedicated to him.