In today's competitive environment, the consumer occupies a predominant position in the eyes of a marketer or business organization. The preferences and predilections of the consumers, and their behaviour and choices are needed to be carefully analyzed as, ultimately, their purchase preferences will increase the market share of the company, maximize its profit and enhance sustainability - the most important goal of the company. This book, through predictive modelling theories, focuses on identifying and profiling of target market segments, developing positioning strategy and brand personality, finding the consumer preferences, offering marketing strategies and delivering value to the customer. The predictive modelling theories discussed in the book help streamline the decision-making process, in order to efficiently target the preferred consumer segment. The book further delineates the decision-making process which is determined by the three approaches: Heuristic approach - RFM analysis; Statistical approach - logistics regression and conjoint analysis; and Data mining approach - Chi-square automatic interactive decision. Software applications such as Excel, SPSS and Answer Tree are used to explain the theories clearly.
Make personalized marketing a reality with this practical guide to predictive analytics Predictive Marketing is a predictive analytics primer for organizations large and small, offering practical tips and actionable strategies for implementing more personalized marketing immediately. The marketing paradigm is changing, and this book provides a blueprint for navigating the transition from creative- to data-driven marketing, from one-size-fits-all to one-on-one, and from marketing campaigns to real-time customer experiences. You'll learn how to use machine-learning technologies to improve customer acquisition and customer growth, and how to identify and re-engage at-risk or lapsed customers by implementing an easy, automated approach to predictive analytics. Much more than just theory and testament to the power of personalized marketing, this book focuses on action, helping you understand and actually begin using this revolutionary approach to the customer experience. Predictive analytics can finally make personalized marketing a reality. For the first time, predictive marketing is accessible to all marketers, not just those at large corporations — in fact, many smaller organizations are leapfrogging their larger counterparts with innovative programs. This book shows you how to bring predictive analytics to your organization, with actionable guidance that get you started today. Implement predictive marketing at any size organization Deliver a more personalized marketing experience Automate predictive analytics with machine learning technology Base marketing decisions on concrete data rather than unproven ideas Marketers have long been talking about delivering personalized experiences across channels. All marketers want to deliver happiness, but most still employ a one-size-fits-all approach. Predictive Marketing provides the information and insight you need to lift your organization out of the campaign rut and into the rarefied atmosphere of a truly personalized customer experience.
Now fully updated, this uniquely accessible book will help you use predictive analytics to solve real business problems and drive real competitive advantage. If you're new to the discipline, it will give you the strong foundation you need to get accurate, actionable results. If you're already a modeler, programmer, or manager, it will teach you crucial skills you don't yet have. This guide illuminates the discipline through realistic vignettes and intuitive data visualizations-not complex math. Thomas W. Miller, leader of Northwestern University's pioneering program in predictive analytics, guides you through defining problems, identifying data, crafting and optimizing models, writing effective R code, interpreting results, and more. Every chapter focuses on one of today's key applications for predictive analytics, delivering skills and knowledge to put models to work-and maximize their value. Reflecting extensive student and instructor feedback, this edition adds five classroom-tested case studies, updates all code for new versions of R, explains code behavior more clearly and completely, and covers modern data science methods even more effectively.
Predictive analytics has revolutionized marketing practice. It involves using many techniques from data mining, statistics, modelling, machine learning and artificial intelligence, to analyse current data and make predictions about unknown future events. In business terms, this enables companies to forecast consumer behaviour and much more. Predictive Analytics for Marketers will guide marketing professionals on how to apply predictive analytical tools to streamline business practices. Including comprehensive coverage of an array of predictive analytic tools and techniques, this book enables readers to harness patterns from past data, to make accurate and useful predictions that can be converted to business success. Truly global in its approach, the insights these techniques offer can be used to manage resources more effectively across all industries and sectors. Written in clear, non-technical language, Predictive Analytics for Marketers contains case studies from the author's more than 25 years of experience and articles from guest contributors, demonstrating how predictive analytics can be used to successfully achieve a range of business purposes.
Who is most likely to buy and what is the best way to target them? How can businesses improve strategy without identifying the key influencing factors? The second edition of Marketing Analytics enables marketers and business analysts to leverage predictive techniques to measure and improve marketing performance. By exploring real-world marketing challenges, it provides clear, jargon-free explanations on how to apply different analytical models for each purpose. From targeted list creation and data segmentation, to testing campaign effectiveness, pricing structures and forecasting demand, this book offers a welcome handbook on how statistics, consumer analytics and modelling can be put to optimal use. The fully revised second edition of Marketing Analytics includes three new chapters on big data analytics, insights and panel regression, including how to collect, separate and analyze big data. All of the advanced tools and techniques for predictive analytics have been updated, translating models such as tobit analysis for customer lifetime value into everyday use. Whether an experienced practitioner or having no prior knowledge, methodologies are simplified to ensure the more complex aspects of data and analytics are fully accessible for any level of application. Complete with downloadable data sets and test bank resources, this book supplies a concrete foundation to optimize marketing analytics for day-to-day business advantage.
Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.
Now, a leader of Northwestern University's prestigious analytics program presents a fully-integrated treatment of both the business and academic elements of marketing applications in predictive analytics. Writing for both managers and students, Thomas W. Miller explains essential concepts, principles, and theory in the context of real-world applications. Building on Miller's pioneering program, Marketing Data Science thoroughly addresses segmentation, target marketing, brand and product positioning, new product development, choice modeling, recommender systems, pricing research, retail site selection, demand estimation, sales forecasting, customer retention, and lifetime value analysis. Starting where Miller's widely-praised Modeling Techniques in Predictive Analytics left off, he integrates crucial information and insights that were previously segregated in texts on web analytics, network science, information technology, and programming. Coverage includes: The role of analytics in delivering effective messages on the web Understanding the web by understanding its hidden structures Being recognized on the web – and watching your own competitors Visualizing networks and understanding communities within them Measuring sentiment and making recommendations Leveraging key data science methods: databases/data preparation, classical/Bayesian statistics, regression/classification, machine learning, and text analytics Six complete case studies address exceptionally relevant issues such as: separating legitimate email from spam; identifying legally-relevant information for lawsuit discovery; gleaning insights from anonymous web surfing data, and more. This text's extensive set of web and network problems draw on rich public-domain data sources; many are accompanied by solutions in Python and/or R. Marketing Data Science will be an invaluable resource for all students, faculty, and professional marketers who want to use business analytics to improve marketing performance.
"Mesmerizing & fascinating..." —The Seattle Post-Intelligencer "The Freakonomics of big data." —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics (aka machine learning) works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive analytics (aka machine learning) unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a
« Written for business analysts, data scientists, statisticians, students, predictive modelers, and data miners, this comprehensive text provides examples that will strengthen your understanding of the essential concepts and methods of predictive modeling. »--
Reasoning with data -- Reasoning from sample to population -- The scientific method : the gold standard for establishing causality -- Linear regression as a fundamental descriptive tool -- Correlation vs. causality in regression analysis -- Basic methods for establishing causal inference -- Advanced methods for establishing causal inference -- Prediction for a dichotomous variable -- Identification and data assessment -- Applications data analysis critiques, write-ups, and projects -- Glossary