Finite Element Analysis in Geotechnical Engineering

Finite Element Analysis in Geotechnical Engineering

Author: David M Potts

Publisher: Thomas Telford

Published: 2001

Total Pages: 456

ISBN-13: 9780727727831

DOWNLOAD EBOOK

An insight into the use of the finite method in geotechnical engineering. The first volume covers the theory and the second volume covers the applications of the subject. The work examines popular constitutive models, numerical techniques and case studies.


Finite Element Analysis in Geotechnical Engineering

Finite Element Analysis in Geotechnical Engineering

Author: David M Potts

Publisher: Thomas Telford

Published: 1999-04-09

Total Pages: 468

ISBN-13: 9780727727534

DOWNLOAD EBOOK

An insight into the use of the finite method in geotechnical engineering. The first volume covers the theory and the second volume covers the applications of the subject. The work examines popular constitutive models, numerical techniques and case studies.


Applied Soil Mechanics with ABAQUS Applications

Applied Soil Mechanics with ABAQUS Applications

Author: Sam Helwany

Publisher: John Wiley & Sons

Published: 2007-03-16

Total Pages: 402

ISBN-13: 0471791075

DOWNLOAD EBOOK

A simplified approach to applying the Finite Element Method to geotechnical problems Predicting soil behavior by constitutive equations that are based on experimental findings and embodied in numerical methods, such as the finite element method, is a significant aspect of soil mechanics. Engineers are able to solve a wide range of geotechnical engineering problems, especially inherently complex ones that resist traditional analysis. Applied Soil Mechanics with ABAQUS® Applications provides civil engineering students and practitioners with a simple, basic introduction to applying the finite element method to soil mechanics problems. Accessible to someone with little background in soil mechanics and finite element analysis, Applied Soil Mechanics with ABAQUS® Applications explains the basic concepts of soil mechanics and then prepares the reader for solving geotechnical engineering problems using both traditional engineering solutions and the more versatile, finite element solutions. Topics covered include: Properties of Soil Elasticity and Plasticity Stresses in Soil Consolidation Shear Strength of Soil Shallow Foundations Lateral Earth Pressure and Retaining Walls Piles and Pile Groups Seepage Taking a unique approach, the author describes the general soil mechanics for each topic, shows traditional applications of these principles with longhand solutions, and then presents finite element solutions for the same applications, comparing both. The book is prepared with ABAQUS® software applications to enable a range of readers to experiment firsthand with the principles described in the book (the software application files are available under "student resources" at www.wiley.com/college/helwany). By presenting both the traditional solutions alongside the FEM solutions, Applied Soil Mechanics with ABAQUS® Applications is an ideal introduction to traditional soil mechanics and a guide to alternative solutions and emergent methods. Dr. Helwany also has an online course based on the book available at www.geomilwaukee.com.


Soil-Machine Interactions

Soil-Machine Interactions

Author: Shen

Publisher: Routledge

Published: 2017-11-13

Total Pages: 360

ISBN-13: 1351415662

DOWNLOAD EBOOK

Aiming to improve work efficiency in such areas as tillage in agriculture, earth-moving in civil engineering, and tunnel-making in sea-bed operations, this work offers an introduction to Finite Element Method (FEM) analysis of soil-machine systems. It explains the advantage of FEM's numerical approach over traditional analytical and empirical methods of dealing with complex factors from nonlinear mechanical behaviour to geometric configurations.


Soil-Machine Interactions

Soil-Machine Interactions

Author: Shen

Publisher: Routledge

Published: 2017-11-13

Total Pages: 352

ISBN-13: 1351415670

DOWNLOAD EBOOK

Aiming to improve work efficiency in such areas as tillage in agriculture, earth-moving in civil engineering, and tunnel-making in sea-bed operations, this work offers an introduction to Finite Element Method (FEM) analysis of soil-machine systems. It explains the advantage of FEM's numerical approach over traditional analytical and empirical methods of dealing with complex factors from nonlinear mechanical behaviour to geometric configurations.


Soil-Machine Interactions

Soil-Machine Interactions

Author: Shen

Publisher: CRC Press

Published: 1998-03-10

Total Pages: 360

ISBN-13: 9780824700812

DOWNLOAD EBOOK

Aiming to improve work efficiency in such areas as tillage in agriculture, earth-moving in civil engineering, and tunnel-making in sea-bed operations, this work offers an introduction to Finite Element Method (FEM) analysis of soil-machine systems. It explains the advantage of FEM's numerical approach over traditional analytical and empirical methods of dealing with complex factors from nonlinear mechanical behaviour to geometric configurations.


Advanced Geotechnical Engineering

Advanced Geotechnical Engineering

Author: Chandrakant S. Desai

Publisher: CRC Press

Published: 2013-11-27

Total Pages: 640

ISBN-13: 1466515600

DOWNLOAD EBOOK

Soil-structure interaction is an area of major importance in geotechnical engineering and geomechanics Advanced Geotechnical Engineering: Soil-Structure Interaction using Computer and Material Models covers computer and analytical methods for a number of geotechnical problems. It introduces the main factors important to the application of computer methods and constitutive models with emphasis on the behavior of soils, rocks, interfaces, and joints, vital for reliable and accurate solutions. This book presents finite element (FE), finite difference (FD), and analytical methods and their applications by using computers, in conjunction with the use of appropriate constitutive models; they can provide realistic solutions for soil–structure problems. A part of this book is devoted to solving practical problems using hand calculations in addition to the use of computer methods. The book also introduces commercial computer codes as well as computer codes developed by the authors. Uses simplified constitutive models such as linear and nonlinear elastic for resistance-displacement response in 1-D problems Uses advanced constitutive models such as elasticplastic, continued yield plasticity and DSC for microstructural changes leading to microcracking, failure and liquefaction Delves into the FE and FD methods for problems that are idealized as two-dimensional (2-D) and three-dimensional (3-D) Covers the application for 3-D FE methods and an approximate procedure called multicomponent methods Includes the application to a number of problems such as dams , slopes, piles, retaining (reinforced earth) structures, tunnels, pavements, seepage, consolidation, involving field measurements, shake table, and centrifuge tests Discusses the effect of interface response on the behavior of geotechnical systems and liquefaction (considered as a microstructural instability) This text is useful to practitioners, students, teachers, and researchers who have backgrounds in geotechnical, structural engineering, and basic mechanics courses.


Deformation Analysis in Soft Ground Improvement

Deformation Analysis in Soft Ground Improvement

Author: Jinchun Chai

Publisher: Springer Science & Business Media

Published: 2011-07-14

Total Pages: 258

ISBN-13: 9400717210

DOWNLOAD EBOOK

This book deals with the behaviour of soft ground improved by some of the more common methods, including the installation of prefabricated vertical drains (PVDs), or the installation of soil-cement columns formed by deep mixing, or the preloading of soft ground by application of a vacuum pressure in addition to, or instead of, a surcharge loading. In particular, it describes the theories and the numerical modelling techniques that may be applied to these soft ground improvement schemes to estimate the immediate and time-dependent mechanical response of the in situ soil. Particular emphasis has been placed on methods that reliably predict ground deformations associated with ground improvement techniques. The book commences with a brief description of the various ground improvement methods and then describes general techniques for modelling the behaviour of soft clay subsoils by the finite element method, as well as details of the methods for modelling soft soils improved by the installation of PVDs. It also includes chapters describing the theory of vacuum consolidation and methods for calculating vacuum pressure-induced ground deformation, as well as a theory which can be used to predict the response of soft ground improved by the installation of soil-cement columns. An important distinguishing feature of this book is the routine use of comparisons of predictions of the proposed models with the results of laboratory studies, and particularly field case studies, in order to validate the proposed methods of analysis. The field case histories are from soft soil sites at various locations around the world. The book is directed towards students of geotechnical engineering as well as geotechnical practitioners. In the main it provides complete derivations of most of the important theoretical results, as the intention was to write a book that could be used as both a teaching text and a reference work for students and practitioners. Audience: The book is intended for geotechnical practitioners as well as for students.