Prediction of Protein Secondary Structure

Prediction of Protein Secondary Structure

Author: Yaoqi Zhou

Publisher: Humana

Published: 2016-10-28

Total Pages: 0

ISBN-13: 9781493964048

DOWNLOAD EBOOK

This thorough volume explores predicting one-dimensional functional properties, functional sites in particular, from protein sequences, an area which is getting more and more attention. Beginning with secondary structure prediction based on sequence only, the book continues by exploring secondary structure prediction based on evolution information, prediction of solvent accessible surface areas and backbone torsion angles, model building, global structural properties, functional properties, as well as visualizing interior and protruding regions in proteins. Written for the highly successful Methods in Molecular Biology series, the chapters include the kind of detail and implementation advice to ensure success in the laboratory. Practical and authoritative, Prediction of Protein Secondary Structure serves as a vital guide to numerous state-of-the-art techniques that are useful for computational and experimental biologists.


Prediction of Protein Structure and the Principles of Protein Conformation

Prediction of Protein Structure and the Principles of Protein Conformation

Author: G.D. Fasman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 796

ISBN-13: 1461315719

DOWNLOAD EBOOK

The prediction of the conformation of proteins has developed from an intellectual exercise into a serious practical endeavor that has great promise to yield new stable enzymes, products of pharmacological significance, and catalysts of great potential. With the application of predic tion gaining momentum in various fields, such as enzymology and immunology, it was deemed time that a volume be published to make available a thorough evaluation of present methods, for researchers in this field to expound fully the virtues of various algorithms, to open the field to a wider audience, and to offer the scientific public an opportunity to examine carefully its successes and failures. In this manner the practitioners of the art could better evaluate the tools and the output so that their expectations and applications could be more realistic. The editor has assembled chapters by many of the main contributors to this area and simultaneously placed their programs at three national resources so that they are readily available to those who wish to apply them to their personal interests. These algorithms, written by their originators, when utilized on pes or larger computers, can instantaneously take a primary amino acid sequence and produce a two-or three-dimensional artistic image that gives satisfaction to one's esthetic sensibilities and food for thought concerning the structure and function of proteins. It is in this spirit that this volume was envisaged.


Deep Learning Techniques and Optimization Strategies in Big Data Analytics

Deep Learning Techniques and Optimization Strategies in Big Data Analytics

Author: Thomas, J. Joshua

Publisher: IGI Global

Published: 2019-11-29

Total Pages: 355

ISBN-13: 1799811948

DOWNLOAD EBOOK

Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there’s a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.


Computer Assisted Modeling

Computer Assisted Modeling

Author: National Research Council

Publisher: National Academies Press

Published: 1987-02-01

Total Pages: 186

ISBN-13: 0309062284

DOWNLOAD EBOOK

In much of biology, the search for understanding the relation between structure and function is now taking place at the macromolecular level. Proteins, nucleic acids, and polysaccharides are macromolecule--polymers formed from families of simpler subunits. Because of their size and complexity, the polymers are capable of both inter- and intramolecular interactions. These interactions confer upon the polymers distinctive three-dimensional shapes. These tertiary configurations, in turn, determine the function of the macromolecule. Computers have become so inextricably involved in empirical studies of three-dimensional macromolecular structure that mathematical modeling, or theory, and experimental approaches are interrelated aspects of a single enterprise.


Prediction of Protein Structures, Functions, and Interactions

Prediction of Protein Structures, Functions, and Interactions

Author: Janusz M. Bujnicki

Publisher: John Wiley & Sons

Published: 2008-12-23

Total Pages: 302

ISBN-13: 9780470741900

DOWNLOAD EBOOK

The growing flood of new experimental data generated by genome sequencing has provided an impetus for the development of automated methods for predicting the functions of proteins that have been deduced by sequence analysis and lack experimental characterization. Prediction of Protein Structures, Functions and Interactions presents a comprehensive overview of methods for prediction of protein structure or function, with the emphasis on their availability and possibilities for their combined use. Methods of modeling of individual proteins, prediction of their interactions, and docking of complexes are put in the context of predicting gene ontology (biological process, molecular function, and cellular component) and discussed in the light of their contribution to the emerging field of systems biology. Topics covered include: first steps of protein sequence analysis and structure prediction automated prediction of protein function from sequence template-based prediction of three-dimensional protein structures: fold-recognition and comparative modelling template-free prediction of three-dimensional protein structures quality assessment of protein models prediction of molecular interactions: from small ligands to large protein complexes macromolecular docking integrating prediction of structure, function, and interactions Prediction of Protein Structures, Functions and Interactions focuses on the methods that have performed well in CASPs, and which are constantly developed and maintained, and are freely available to academic researchers either as web servers or programs for local installation. It is an essential guide to the newest, best methods for prediction of protein structure and functions, for researchers and advanced students working in structural bioinformatics, protein chemistry, structural biology and drug discovery.


Protein Structure Prediction

Protein Structure Prediction

Author: David Webster

Publisher: Springer Science & Business Media

Published: 2008-02-03

Total Pages: 425

ISBN-13: 1592593682

DOWNLOAD EBOOK

The number of protein sequences grows each year, yet the number of structures deposited in the Protein Data Bank remains relatively small. The importance of protein structure prediction cannot be overemphasized, and this volume is a timely addition to the literature in this field. Protein Structure Prediction: Methods and Protocols is a departure from the normal Methods in Molecular Biology series format. By its very nature, protein structure prediction demands that there be a greater mix of theoretical and practical aspects than is normally seen in this series. This book is aimed at both the novice and the experienced researcher who wish for detailed inf- mation in the field of protein structure prediction; a major intention here is to include important information that is needed in the day-to-day work of a research scientist, important information that is not always decipherable in scientific literature. Protein Structure Prediction: Methods and Protocols covers the topic of protein structure prediction in an eclectic fashion, detailing aspects of pred- tion that range from sequence analysis (a starting point for many algorithms) to secondary and tertiary methods, on into the prediction of docked complexes (an essential point in order to fully understand biological function). As this volume progresses, the authors contribute their expert knowledge of protein structure prediction to many disciplines, such as the identification of motifs and domains, the comparative modeling of proteins, and ab initio approaches to protein loop, side chain, and protein prediction.


Protein Structure Prediction

Protein Structure Prediction

Author: Mohammed Zaki

Publisher: Springer Science & Business Media

Published: 2007-09-12

Total Pages: 338

ISBN-13: 1588297527

DOWNLOAD EBOOK

This book covers elements of both the data-driven comparative modeling approach to structure prediction and also recent attempts to simulate folding using explicit or simplified models. Despite the unsolved mystery of how a protein folds, advances are being made in predicting the interactions of proteins with other molecules. Also rapidly advancing are the methods for solving the inverse folding problem, the problem of finding a sequence to fit a structure. This book focuses on the various computational methods for prediction, their successes and their limitations, from the perspective of their most well known practitioners.


Protein Structure Prediction

Protein Structure Prediction

Author: Michael J. E. Sternberg

Publisher: Oxford University Press

Published: 1996

Total Pages: 298

ISBN-13: 9780199634972

DOWNLOAD EBOOK

The prediction of the three-dimensional structure of a protein from its sequence is a problem faced by an ever-increasing number of biological scientists as they strive to utilize genetic information. The increasing sizes of the sequence and structural databases, the improvements in computingpower, and the deeper understanding of the principles of protein structure have led to major developments in the field in the last few years. This book presents practical computer-based methods using the latest computer modelling algorithms.


Introduction to Protein Structure Prediction

Introduction to Protein Structure Prediction

Author: Huzefa Rangwala

Publisher: John Wiley & Sons

Published: 2011-03-16

Total Pages: 611

ISBN-13: 111809946X

DOWNLOAD EBOOK

A look at the methods and algorithms used to predict protein structure A thorough knowledge of the function and structure of proteins is critical for the advancement of biology and the life sciences as well as the development of better drugs, higher-yield crops, and even synthetic bio-fuels. To that end, this reference sheds light on the methods used for protein structure prediction and reveals the key applications of modeled structures. This indispensable book covers the applications of modeled protein structures and unravels the relationship between pure sequence information and three-dimensional structure, which continues to be one of the greatest challenges in molecular biology. With this resource, readers will find an all-encompassing examination of the problems, methods, tools, servers, databases, and applications of protein structure prediction and they will acquire unique insight into the future applications of the modeled protein structures. The book begins with a thorough introduction to the protein structure prediction problem and is divided into four themes: a background on structure prediction, the prediction of structural elements, tertiary structure prediction, and functional insights. Within those four sections, the following topics are covered: Databases and resources that are commonly used for protein structure prediction The structure prediction flagship assessment (CASP) and the protein structure initiative (PSI) Definitions of recurring substructures and the computational approaches used for solving sequence problems Difficulties with contact map prediction and how sophisticated machine learning methods can solve those problems Structure prediction methods that rely on homology modeling, threading, and fragment assembly Hybrid methods that achieve high-resolution protein structures Parts of the protein structure that may be conserved and used to interact with other biomolecules How the loop prediction problem can be used for refinement of the modeled structures The computational model that detects the differences between protein structure and its modeled mutant Whether working in the field of bioinformatics or molecular biology research or taking courses in protein modeling, readers will find the content in this book invaluable.


Protein Bioinformatics

Protein Bioinformatics

Author: M. Michael Gromiha

Publisher: Academic Press

Published: 2011-04-21

Total Pages: 349

ISBN-13: 0123884241

DOWNLOAD EBOOK

One of the most pressing tasks in biotechnology today is to unlock the function of each of the thousands of new genes identified every day. Scientists do this by analyzing and interpreting proteins, which are considered the task force of a gene. This single source reference covers all aspects of proteins, explaining fundamentals, synthesizing the latest literature, and demonstrating the most important bioinformatics tools available today for protein analysis, interpretation and prediction. Students and researchers of biotechnology, bioinformatics, proteomics, protein engineering, biophysics, computational biology, molecular modeling, and drug design will find this a ready reference for staying current and productive in this fast evolving interdisciplinary field. - Explains all aspects of proteins including sequence and structure analysis, prediction of protein structures, protein folding, protein stability, and protein interactions - Presents a cohesive and accessible overview of the field, using illustrations to explain key concepts and detailed exercises for students.