20th European Symposium of Computer Aided Process Engineering

20th European Symposium of Computer Aided Process Engineering

Author: Sauro Pierucci

Publisher: Elsevier

Published: 2010-06-03

Total Pages: 1373

ISBN-13: 0444535705

DOWNLOAD EBOOK

ESCAPE-20 is the most recent in a series of conferences that serves as a forum for engineers, scientists, researchers, managers and students from academia and industry to present and discuss progress being made in the area of "Computer Aided Process Engineering" (CAPE). CAPE covers computer-aided methods, algorithms and techniques related to process and product engineering. The ESCAPE-20 scientific program reflects the strategic objectives of the CAPE Working Party: to check the status of historically consolidated topics by means of their industrial application and to evaluate their emerging issues. - Includes a CD that contains all research papers and contributions - Features a truly international scope, with guest speakers and keynote talks from leaders in science and industry - Presents papers covering the latest research, key topical areas, and developments in computer-aided process engineering (CAPE)


Multiscale Thermo-Dynamics

Multiscale Thermo-Dynamics

Author: Michal Pavelka

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-08-06

Total Pages: 294

ISBN-13: 3110350955

DOWNLOAD EBOOK

One common feature of new emerging technologies is the fusion of the very small (nano) scale and the large scale engineering. The classical environment provided by single scale theories, as for instance by the classical hydrodynamics, is not anymore satisfactory. The main challenge is to keep the important details while still be able to keep the overall picture and simplicity. It is the thermodynamics that addresses this challenge. Our main reason for writing this book is to explain such general viewpoint of thermodynamics and to illustrate it on a very wide range of examples. Contents Levels of description Hamiltonian mechanics Irreversible evolution Reversible and irreversible evolution Multicomponent systems Contact geometry Appendix: Mathematical aspects


Fundamentals of Inhomogeneous Fluids

Fundamentals of Inhomogeneous Fluids

Author: Douglas Henderson

Publisher: CRC Press

Published: 2021-12-17

Total Pages: 624

ISBN-13: 1000148041

DOWNLOAD EBOOK

A monograph examining recent progress in the field of inhomogeneous fluids, focusing on the theoretical - as well as experimental - techniques used. It presents the comprehensive theory of first-order phase transitions, including melting, and contains numerous figures, tables and display equations.;The contributors treat such subjects as: exact sum rules for inhomogenous fluids, explaining density functional and integral equation methods; exact solutions for two-dimensional homogeneous and inhomogeneous plasmas; current advances in the theory of interfacial electrochemistry; wetting experiments and the theory of wetting; freezing, with an emphasis on quantum systems and homogeneous nucleation in liquid-vapour and solid-liquid transitions; self-organizing liquids as well as kinetic phenomena in inhomogeneous fluids, using a modified Enskog theory.;Featuring over 1000 bibliographic citations, this volume is aimed at physical, surface, colloid and surfactant chemists; also physicists, electrochemists and graduate-level students in these disciplines.


The Selected Works of John W. Cahn

The Selected Works of John W. Cahn

Author: W. Craig Carter

Publisher: John Wiley & Sons

Published: 2013-10-28

Total Pages: 830

ISBN-13: 1118788206

DOWNLOAD EBOOK

This book represents a collection of 30 selected papers from the work of John W. Cahn. Dr. Cahn is Senior Fellow at the Materials Science and Engineering Laboratory of the National Institute of Standards and Technology, and is widely recognized as a founder of modern theory and thought in materials science. The range of his research included kinetics and mechanisms of metallurgical phase changes, surfaces, interfaces, defects, quasicrystals, thermodynamics, and other areas impacting the fundamental understanding of materials science. Each paper includes a 2-4 page review of the impact and historical perspective of the work. This is an important collection for students, instructors, and scientists interested in materials science.


On the Continuity of the Gaseous and Liquid States

On the Continuity of the Gaseous and Liquid States

Author: J. D. Van Der Waals

Publisher: Courier Corporation

Published: 2004-01-01

Total Pages: 336

ISBN-13: 9780486495934

DOWNLOAD EBOOK

This much-cited thesis by J. D. van der Waals, the recipient of the 1910 Nobel Prize in physics, is accompanied by an introductory essay by J. S. Rowlinson and another work by van der Waals on the theory of liquid mixtures. 1988 edition.


Theory and Simulation of Hard-Sphere Fluids and Related Systems

Theory and Simulation of Hard-Sphere Fluids and Related Systems

Author: Angel Mulero

Publisher: Springer

Published: 2008-07-10

Total Pages: 568

ISBN-13: 3540787674

DOWNLOAD EBOOK

Hard spheres and related objects (hard disks and mixtures of hard systems) are paradigmatic systems: indeed, they have served as a basis for the theoretical and numerical development of a number of fields, such as general liquids and fluids, amorphous solids, liquid crystals, colloids and granular matter, to name but a few. The present volume introduces and reviews some important basics and progress in the study of such systems. Their structure, thermodynamic properties, equations of state, as well as kinetic and transport properties are considered from different and complementary points of view. This book addresses graduate students, lecturers as well as researchers in statistical mechanics, physics of liquids, physical chemistry and chemical engineering.


Polymer Blends Volume 1

Polymer Blends Volume 1

Author: Donald R Paul

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 520

ISBN-13: 0323138896

DOWNLOAD EBOOK

Polymer Blends, Volume 1 highlights the importance of polymer blends as a major new branch of macromolecular science. Topics range from polymer-polymer compatibility and the statistical thermodynamics of polymer blends to the phase separation behavior of polymer-polymer mixtures, transport phenomena in polymer blends, and mechanical properties of multiphase polymer blends. The optical behavior, solid state transition behavior, and rheology of polymer blends are also discussed. This book is organized into 10 chapters and begins with an overview of polymer blends, with emphasis on terminology and the effect of molecular weight on the thermodynamics of polymer blends as well as phase equilibria and transitions. The discussion then turns to the miscibility of homopolymers and copolymers, in bulk and in solution, from the experimental and theoretical viewpoints. The chapters that follow explore the statistical thermodynamics of polymer blends, paying particular attention to the Flory and lattice fluid theories, along with the phase relationship in polymer mixtures. The interfacial energy, structure, and adhesion between polymers in relation to the properties of polymer blends are considered. The final chapter examines the phenomena of low molecular weight penetrant transport. Currently accepted models for unsteady-state and steady-state permeation of polymeric materials are presented. A discussion of unsteady-state absorption and desorption behavior observed in a variety of polymer blends complements the treatment of permeation behavior. This book is intended to provide academic and industrial research scientists and technologists with a broad background in current principles and practice concerning mixed polymer systems.