This book gathers outstanding research papers presented at the 6th International Joint Conference on Advances in Computational Intelligence (IJCACI 2022), held in hybrid mode during October 15 – 16, 2022. IJCACI 2022 is jointly organized by Jahangirnagar University (JU), Bangladesh and South Asian University (SAU), India. The book presents the novel contributions in areas of computational intelligence and it serves as a reference material for advance research. The topics covered are collective intelligence, soft computing, optimization, cloud computing, machine learning, intelligent software, robotics, data science, data security, big data analytics, and signal and natural language processing.
Co-published with and In this era of “Big Data,” institutions of higher education are challenged to make the most of the information they have to improve student learning outcomes, close equity gaps, keep costs down, and address the economic needs of the communities they serve at the local, regional, and national levels. This book helps readers understand and respond to this “analytics revolution,” examining the evolving dynamics of the institutional research (IR) function, and the many audiences that institutional researchers need to serve.Internally, there is a growing need among senior leaders, administrators, faculty, advisors, and staff for decision analytics that help craft better resource strategies and bring greater efficiencies and return-on-investment for students and families. Externally, state legislators, the federal government, and philanthropies demand more forecasting and more evidence than ever before. These demands require new and creative responses, as they are added to previous demands, rather than replacing them, nor do they come with additional resources to produce the analysis to make data into actionable improvements. Thus the IR function must become that of teacher, ensuring that data and analyses are accurate, timely, accessible, and compelling, whether produced by an IR office or some other source. Despite formidable challenges, IR functions have begun to leverage big data and unlock the power of predictive tools and techniques, contributing to improved student outcomes.
Institutional research (IR) is a growing, applied, and interdisciplinary area that attracts people from a variety of fields, including computer programmers, statisticians, and administrators and faculty from every discipline to work in archiving, analyzing, and reporting on all aspects of higher education information systems. Cases on Institutional Research Systems is a reference book for institutional research, appealing to novice and expert IR professionals and the administrators and policymakers that rely on their data. By presenting a variety of institutional perspectives, the book depicts the challenges and solutions to those in higher education administration, and state, federal, and even international accreditation.
Learning Analytics Explained draws extensively from case studies and interviews with experts in order to discuss emerging applications of the new field of learning analytics. Educational institutions increasingly collect data on students and their learning experiences, a practice that helps enhance courses, identify learners who require support, and provide a more personalized learning experience. There is, however, a corresponding need for guidance on how to carry out institutional projects, intervene effectively with students, and assess legal and ethical issues. This book provides that guidance while also covering the evolving technical architectures, standards, and products within the field.
The term 'learning analytics' is defined as the measurement, collection, analysis, and reporting of information about learners and their contexts for the purposes of understanding and optimizing learning. In recent years learning analytics has emerged as a promising area of research that trails the digital footprint of the learners and extracts useful knowledge from educational databases to understand students’ progress and success. With the availability of an increased amount of data, potential benefits of learning analytics can be far-reaching to all stakeholders in education including students, teachers, leaders, and policymakers. Educators firmly believe that, if properly harnessed, learning analytics will be an indispensable tool to enhance the teaching-learning process, narrow the achievement gap, and improve the quality of education. Many investigations have been carried out and disseminated in the literature and studies related to learning analytics are growing exponentially. This book documents recent attempts to conduct systematic, prodigious and multidisciplinary research in learning analytics and present their findings and identify areas for further research and development. The book also unveils the distinguished and exemplary works by educators and researchers in the field highlighting the current trends, privacy and ethical issues, creative and unique approaches, innovative methods, frameworks, and theoretical and practical aspects of learning analytics. Contributors are: Arif Altun, Alexander Amigud, Dongwook An, Mirella Atherton, Robert Carpenter, Martin Ebner, John Fritz, Yoshiko Goda, Yasemin Gulbahar, Junko Handa, Dirk Ifenthaler, Yumi Ishige, Il-Hyun Jo, Kosuke Kaneko, Selcan Kilis, Daniel Klasen, Mehmet Kokoç, Shin'ichi Konomi, Philipp Leitner, ChengLu Li, Min Liu, Karin Maier, Misato Oi, Fumiya Okubo, Xin Pan, Zilong Pan, Clara Schumacher, Yi Shi, Atsushi Shimada, Yuta Taniguchi, Masanori Yamada, and Wenting Zou.
This edited volume fills the gaps in existing literature on visualization and dashboard design for learning analytics. To do so, it presents critical tips to stakeholders and acts as guide to efficient implementation. The book covers the following topics: visualization and dashboard design for learning analytics, visualization and dashboard preferences of stakeholders, learners’ patterns on the dashboard, usability of visualization techniques and the dashboard, dashboard and intervention design, learning and instructional design for learning analytics, privacy and security issues about the dashboard, and future directions of visualization and dashboard design. This book will be of interest to researchers with interest in learning analytics and data analytics, teachers and students in higher education institutions and instructional designers, as it includes contributions from a wide variety of educational and psychological researchers, engineers, instructional designers, learning scientists, and computer scientists interested in learning analytics.
As higher education institutions face challenges like technological advancements, student demographics, and funding constraints, effective strategic management is essential. This involves enhancing institutional capabilities through improved governance, resource allocation, and stakeholder engagement while fostering a culture of innovation and collaboration. By prioritizing strategic planning and capacity building, academic institutions can remain relevant and responsive to the needs of students, faculty, and the broader community. Further research empowers universities to achieve sustainable growth and fulfill their educational and social objectives. Building Organizational Capacity and Strategic Management in Academia explores the crucial role of leadership and strategic management in boosting the capacity and effectiveness of higher education institutions. It examines the complex dynamics of organizational change, innovation, and sustainable growth within the setting of academia. This book covers topics such as brand management, information technology, and strategic planning, and is a useful resource for business owners, academicians, educators, managers, computer engineers, scientists, and researchers.
Online learning has increasingly been viewed as a possible way to remove barriers associated with traditional face-to-face teaching, such as overcrowded classrooms and shortage of certified teachers. While online learning has been recognized as a possible approach to deliver more desirable learning outcomes, close to half of online students drop out as a result of student-related, course-related, and out-of-school-related factors (e.g., poor self-regulation; ineffective teacher-student, student-student, and platform-student interactions; low household income). Many educators have expressed concern over students who unexpectedly begin to struggle and appear to fall off track without apparent reason. A well-implemented early warning system, therefore, can help educators identify students at risk of dropping out and assign and monitor interventions to keep them on track for graduation. Despite the popularity of early warning systems, research on their design and implementation is sparse. Early Warning Systems and Targeted Interventions for Student Success in Online Courses is a cutting-edge research publication that examines current theoretical frameworks, research projects, and empirical studies related to the design, implementation, and evaluation of early warning systems and targeted interventions and discusses their implications for policy and practice. Moreover, this book will review common challenges of early warning systems and dashboard design and will explore design principles and data visualization tools to make data more understandable and, therefore, more actionable. Highlighting a range of topics such as curriculum design, game-based learning, and learning support, it is ideal for academicians, policymakers, administrators, researchers, education professionals, instructional designers, data analysts, and students.