Precipitation Partitioning by Vegetation

Precipitation Partitioning by Vegetation

Author: John T. Van Stan, II

Publisher: Springer

Published: 2020-01-02

Total Pages: 0

ISBN-13: 9783030297015

DOWNLOAD EBOOK

This book presents research on precipitation partitioning processes in vegetated ecosystems, putting them into a global context. It describes the processes by which meteoric water comes into contact with the vegetation's canopy, typically the first surface contact of precipitation on land. It also discusses how precipitation partitioning by vegetation impacts the amount, patterning, and chemistry of water reaching the surface, as well as the amount and timing of evaporative return to the atmosphere. Although this process has been extensively studied, this is the first review of the global literature on the partitioning of precipitation by forests, shrubs, crops, grasslands and other less-studies plant types. The authors offer global contextualization combined with a detailed discussion of the impacts for the climate and terrestrial ecohydrological systems. As such, this comprehensive overview is a valuable reference tool for a wide range of specialists and students in the fields of geoscience and the environment.


Precipitation Partitioning by Vegetation

Precipitation Partitioning by Vegetation

Author: John T. Van Stan, II

Publisher: Springer Nature

Published: 2020-01-01

Total Pages: 295

ISBN-13: 3030297020

DOWNLOAD EBOOK

This book presents research on precipitation partitioning processes in vegetated ecosystems, putting them into a global context. It describes the processes by which meteoric water comes into contact with the vegetation's canopy, typically the first surface contact of precipitation on land. It also discusses how precipitation partitioning by vegetation impacts the amount, patterning, and chemistry of water reaching the surface, as well as the amount and timing of evaporative return to the atmosphere. Although this process has been extensively studied, this is the first review of the global literature on the partitioning of precipitation by forests, shrubs, crops, grasslands and other less-studies plant types. The authors offer global contextualization combined with a detailed discussion of the impacts for the climate and terrestrial ecohydrological systems. As such, this comprehensive overview is a valuable reference tool for a wide range of specialists and students in the fields of geoscience and the environment.


Forest Hydrology and Biogeochemistry

Forest Hydrology and Biogeochemistry

Author: Delphis F. Levia

Publisher: Springer Science & Business Media

Published: 2011-06-15

Total Pages: 734

ISBN-13: 9400713630

DOWNLOAD EBOOK

This international rigorously peer-reviewed volume critically synthesizes current knowledge in forest hydrology and biogeochemistry. It is a one-stop comprehensive reference tool for researchers and practitioners in the fields of hydrology, biogeoscience, ecology, forestry, boundary-layer meteorology, and geography. Following an introductory chapter tracing the historical roots of the subject, the book is divided into the following main sections: · Sampling and Novel Approaches · Forest Hydrology and Biogeochemistry by Ecoregion and Forest Type · Hydrologic and Biogeochemical Fluxes from the Canopy to the Phreatic Surface · Hydrologic and Biogeochemical Fluxes in Forest Ecosystems: Effects of Time, Stressors, and Humans The volume concludes with a final chapter that reflects on the current state of knowledge and identifies some areas in need of further research.


Urban Climates

Urban Climates

Author: T. R. Oke

Publisher: Cambridge University Press

Published: 2017-09-14

Total Pages: 549

ISBN-13: 1108179363

DOWNLOAD EBOOK

Urban Climates is the first full synthesis of modern scientific and applied research on urban climates. The book begins with an outline of what constitutes an urban ecosystem. It develops a comprehensive terminology for the subject using scale and surface classification as key constructs. It explains the physical principles governing the creation of distinct urban climates, such as airflow around buildings, the heat island, precipitation modification and air pollution, and it then illustrates how this knowledge can be applied to moderate the undesirable consequences of urban development and help create more sustainable and resilient cities. With urban climate science now a fully-fledged field, this timely book fulfills the need to bring together the disparate parts of climate research on cities into a coherent framework. It is an ideal resource for students and researchers in fields such as climatology, urban hydrology, air quality, environmental engineering and urban design.


Forest Hydrology

Forest Hydrology

Author: Devendra Amatya

Publisher: CABI

Published: 2016-09-14

Total Pages: 309

ISBN-13: 1780646607

DOWNLOAD EBOOK

Forests cover approximately 26% of the world's land surface area and represent a distinct biotic community. They interact with water and soil in a variety of ways, providing canopy surfaces which trap precipitation and allow evaporation back into the atmosphere, thus regulating how much water reaches the forest floor as through fall, as well as pull water from the soil for transpiration. The discipline "forest hydrology" has been developed throughout the 20th century. During that time human intervention in natural landscapes has increased, and land use and management practices have intensified. The book will be useful for graduate students, professionals, land managers, practitioners, and researchers with a good understanding of the basic principles of hydrology and hydrologic processes.


Only in Africa

Only in Africa

Author: Norman Owen-Smith

Publisher: Cambridge University Press

Published: 2021-10-07

Total Pages: 379

ISBN-13: 1108832598

DOWNLOAD EBOOK

Demonstrates how Africa's physical features, savannas and abundant grazers enabled frugivorous apes to become savanna-living hunters.


Predicting Rainfall Erosion Losses

Predicting Rainfall Erosion Losses

Author: Walter H. Wischmeier

Publisher:

Published: 1978

Total Pages: 70

ISBN-13:

DOWNLOAD EBOOK

The Universal Soil Loss Equation (USLE) enables planners to predict the average rate of soil erosion for each feasible alternative combination of crop system and management practices in association with a specified soil type, rainfall pattern, and topography. When these predicted losses are compared with given soil loss tolerances, they provide specific guidelines for effecting erosion control within specified limits. The equation groups the numerous interrelated physical and management parameters that influence erosion rate under six major factors whose site-specific values can be expressed numerically. A half century of erosion research in many States has supplied information from which at least approximate values of the USLE factors can be obtained for specified farm fields or other small erosion prone areas throughout the United States. Tables and charts presented in this handbook make this information readily available for field use. Significant limitations in the available data are identified.