This book offers a one-stop resource for performing quantitative risk analyses. The authors provide practical case studies along with detailed instruction and illustration of the features of ModelRisk, the most advanced risk modeling spreadsheet software currently available. The specific examples in the text demonstrate a number of cutting-edge tools and techniques that are very powerful in risk analysis but that are not available in other spreadsheet simulation programs. The book covers modeling complex correlations, aggregating uncertainty and variability, and estimating parameter and model uncertainty. The included CD-ROM provides a 120-day trial of ModelRisk.
Practical Spreadsheet Modeling Using @Risk provides a guide of how to construct applied decision analysis models in spreadsheets. The focus is on the use of Monte Carlo simulation to provide quantitative assessment of uncertainties and key risk drivers. The book presents numerous examples based on real data and relevant practical decisions in a variety of settings, including health care, transportation, finance, natural resources, technology, manufacturing, retail, and sports and entertainment. All examples involve decision problems where uncertainties make simulation modeling useful to obtain decision insights and explore alternative choices. Good spreadsheet modeling practices are highlighted. The book is suitable for graduate students or advanced undergraduates in business, public policy, health care administration, or any field amenable to simulation modeling of decision problems. The book is also useful for applied practitioners seeking to build or enhance their spreadsheet modeling skills. Features Step-by-step examples of spreadsheet modeling and risk analysis in a variety of fields Description of probabilistic methods, their theoretical foundations, and their practical application in a spreadsheet environment Extensive example models and exercises based on real data and relevant decision problems Comprehensive use of the @Risk software for simulation analysis, including a free one-year educational software license
Practical Spreadsheet Modeling Using @Risk provides a guide of how to construct applied decision analysis models in spreadsheets. The focus is on the use of Monte Carlo simulation to provide quantitative assessment of uncertainties and key risk drivers. The book presents numerous examples based on real data and relevant practical decisions in a variety of settings, including health care, transportation, finance, natural resources, technology, manufacturing, retail, and sports and entertainment. All examples involve decision problems where uncertainties make simulation modeling useful to obtain decision insights and explore alternative choices. Good spreadsheet modeling practices are highlighted. The book is suitable for graduate students or advanced undergraduates in business, public policy, health care administration, or any field amenable to simulation modeling of decision problems. The book is also useful for applied practitioners seeking to build or enhance their spreadsheet modeling skills. Features Step-by-step examples of spreadsheet modeling and risk analysis in a variety of fields Description of probabilistic methods, their theoretical foundations, and their practical application in a spreadsheet environment Extensive example models and exercises based on real data and relevant decision problems Comprehensive use of the @Risk software for simulation analysis, including a free one-year educational software license
Named peril index insurance has great potential to address unmet risk management needs for agricultural insurance in developing economies, potentially contributing to increased agricultural sustainability and improved food security. However, the development and appraisal of index insurance business lines is not without challenges. Insurers must rigorously evaluate the quality of the products they offer and take care to ensure that distributors and policyholders understand the benefits and limits of the purchased coverage. Without these important steps to ensure responsible insurance practices, insurers can damage the implementation and potential of index insurance in the market. Risk Modeling for Appraising Named Peril Index Insurance Products: A Guide for Practitioners helps stakeholders in the named peril index insurance industry appraise new and existing products. Part 1 of the guide provides a summary of the insights and decisions required for the insurer to make an informed decision to launch and expand an index insurance business line. Insurance managers are the primary audience for part 1. Part 2 provides a step-by-step guide to calculating the decision metrics used by the insurance manager in part 1. These metrics are calculated using probabilistic modeling that provides insights into risks related to the index insurance product. Actuarial analysts are the primary audience for part 2. In an increasingly competitive insurance market, creative product development and imaginative business strategies are becoming the norm. This guide will help emerging market insurers who seek to stay on the cutting edge to successfully and sustainably penetrate new market segments.
Practitioners operate in a necessary reality. We work in a space where project performance is above theory or methodology. In the best environments, delivery and an affirmative culture are what matter most. In the worst, it is politics and survival. In any environment we are challenged to adopt best practices and adapt our style to the environment in which the project is occurring. This is a book about those best practices and practitioner experiences. It is a must have reference and guide book for project managers, general managers, business leaders and project management researchers. This book is the result of the hard work and dedication of more than 35 authors from more than 15 countries across four continents. It brings a diversity of experience, professional and personal. It includes practitioners, leading academics, renowned theorists and many who straddle those roles. The chapters cover experiences in software, large scale infrastructure projects, finance and health care, to name a few. The chapters themselves take many forms. Check out the table of contents to get a deeper sense of the topics included. All provide real-world guidance on delivering high performing projects and show you how to build, lead and manage high performing teams. The Practitioners Handbook of Project Performance is complete in itself. It can also be an enticing start to an ongoing dialogue with the authors and a pleasurable path to get deeper into the subject of project performance. Find your favorite place to begin learning from these chapters, to begin taking notes and taking away nuggets to use in your everyday. But don’t stop there. Contact information and further resources for this diverse team of experts authors are found throughout. The Practitioners Handbook is a modern guide to the leading edge of project performance management and a path to the future of project delivery.
In this book, the study of strategic risk is not only for its control and mitigation using analytics and digital transformation in organizations, but also it is about the strategic risks that digital transformation can bring to organizations. Strategic risk control is one of the goals in creating intelligent organizations and at the same time it is part of the appetite for creating smarter organizations to support organizations' development. Knowledge that is created by data analytics and the capacity to operationalize that knowledge through digital transformation can produce potential sustainable competitive advantages.The core of the volume is connecting data analytics and artificial intelligence, risk management and digitalization to create strategic intelligence as the capacity of adaptation that organizations need to compete and to succeed. Strategic intelligence is a symbiotic work of artificial intelligence, business intelligence and competitive intelligence. Strategic risk is represented by the probability of having variations in the performance results of the organizations that can limit their capacity to maintain sustainable competitive advantages. There is an emphasis in the book about the conversion of models that support data analytics into actions to mitigate strategic risk based on digital transformation.This book reviews the steps that organizations have taken in using technology that connects the data analytics modeling process and digital operations, such as the shift from the use of statistical learning and machine learning for data analytics to the improvement and use of new technologies. The digitalization process is a potential opportunity for organizations however the results are not necessarily good for everyone. Hence, organizations implement strategic risk control in cloud computing, blockchain, artificial intelligence and create digital networks that are connected internally and externally to deal with internal and external customers, with suppliers and buyers, and with competitors and substitutes. The new risks appear once new knowledge emerges and is in use, but at the same time the new knowledge supports the initiatives to deal with risks arising from novel ways of competing and collaborating.
Praise for Financial Modeling with Crystal Ball(r) and Excel(r) "Professor Charnes's book drives clarity into applied Monte Carlo analysis using examples and tools relevant to real-world finance. The book will prove useful for analysts of all levels and as a supplement to academic courses in multiple disciplines." -Mark Odermann, Senior Financial Analyst, Microsoft "Think you really know financial modeling? This is a must-have for power Excel users. Professor Charnes shows how to make more realistic models that result in fewer surprises. Every analyst needs this credibility booster." -James Franklin, CEO, Decisioneering, Inc. "This book packs a first-year MBA's worth of financial and business modeling education into a few dozen easy-to-understand examples. Crystal Ball software does the housekeeping, so readers can concentrate on the business decision. A careful reader who works the examples on a computer will master the best general-purpose technology available for working with uncertainty." -Aaron Brown, Executive Director, Morgan Stanley, author of The Poker Face of Wall Street "Using Crystal Ball and Excel, John Charnes takes you step by step, demonstrating a conceptual framework that turns static Excel data and financial models into true risk models. I am astonished by the clarity of the text and the hands-on, step-by-step examples using Crystal Ball and Excel; Professor Charnes is a masterful teacher, and this is an absolute gem of a book for the new generation of analyst." -Brian Watt, Chief Operating Officer, GECC, Inc. "Financial Modeling with Crystal Ball and Excel is a comprehensive, well-written guide to one of the most useful analysis tools available to professional risk managers and quantitative analysts. This is a must-have book for anyone using Crystal Ball, and anyone wanting an overview of basic risk management concepts." -Paul Dietz, Manager, Quantitative Analysis, Westar Energy "John Charnes presents an insightful exploration of techniques for analysis and understanding of risk and uncertainty in business cases. By application of real options theory and Monte Carlo simulation to planning, doors are opened to analysis of what used to be impossible, such as modeling the value today of future project choices." -Bruce Wallace, Nortel
Market Risk Analysis is the most comprehensive, rigorous and detailed resource available on market risk analysis. Written as a series of four interlinked volumes each title is self-contained, although numerous cross-references to other volumes enable readers to obtain further background knowledge and information about financial applications. Volume I: Quantitative Methods in Finance covers the essential mathematical and financial background for subsequent volumes. Although many readers will already be familiar with this material, few competing texts contain such a complete and pedagogical exposition of all the basic quantitative concepts required for market risk analysis. There are six comprehensive chapters covering all the calculus, linear algebra, probability and statistics, numerical methods and portfolio mathematics that are necessary for market risk analysis. This is an ideal background text for a Masters course in finance. Volume II: Practical Financial Econometrics provides a detailed understanding of financial econometrics, with applications to asset pricing and fund management as well as to market risk analysis. It covers equity factor models, including a detailed analysis of the Barra model and tracking error, principal component analysis, volatility and correlation, GARCH, cointegration, copulas, Markov switching, quantile regression, discrete choice models, non-linear regression, forecasting and model evaluation. Volume III: Pricing, Hedging and Trading Financial Instruments has five very long chapters on the pricing, hedging and trading of bonds and swaps, futures and forwards, options and volatility as well detailed descriptions of mapping portfolios of these financial instruments to their risk factors. There are numerous examples, all coded in interactive Excel spreadsheets, including many pricing formulae for exotic options but excluding the calibration of stochastic volatility models, for which Matlab code is provided. The chapters on options and volatility together constitute 50% of the book, the slightly longer chapter on volatility concentrating on the dynamic properties the two volatility surfaces the implied and the local volatility surfaces that accompany an option pricing model, with particular reference to hedging. Volume IV: Value at Risk Models builds on the three previous volumes to provide by far the most comprehensive and detailed treatment of market VaR models that is currently available in any textbook. The exposition starts at an elementary level but, as in all the other volumes, the pedagogical approach accompanied by numerous interactive Excel spreadsheets allows readers to experience the application of parametric linear, historical simulation and Monte Carlo VaR models to increasingly complex portfolios. Starting with simple positions, after a few chapters we apply value-at-risk models to interest rate sensitive portfolios, large international securities portfolios, commodity futures, path dependent options and much else. This rigorous treatment includes many new results and applications to regulatory and economic capital allocation, measurement of VaR model risk and stress testing.