Fundamentals of Numerical Computation

Fundamentals of Numerical Computation

Author: Tobin A. Driscoll

Publisher: SIAM

Published: 2017-12-21

Total Pages: 583

ISBN-13: 1611975085

DOWNLOAD EBOOK

Fundamentals of Numerical Computation?is an advanced undergraduate-level introduction to the mathematics and use of algorithms for the fundamental problems of numerical computation: linear algebra, finding roots, approximating data and functions, and solving differential equations. The book is organized with simpler methods in the first half and more advanced methods in the second half, allowing use for either a single course or a sequence of two courses. The authors take readers from basic to advanced methods, illustrating them with over 200 self-contained MATLAB functions and examples designed for those with no prior MATLAB experience. Although the text provides many examples, exercises, and illustrations, the aim of the authors is not to provide a cookbook per se, but rather an exploration of the principles of cooking. The authors have developed an online resource that includes well-tested materials related to every chapter. Among these materials are lecture-related slides and videos, ideas for student projects, laboratory exercises, computational examples and scripts, and all the functions presented in the book. The book is intended for advanced undergraduates in math, applied math, engineering, or science disciplines, as well as for researchers and professionals looking for an introduction to a subject they missed or overlooked in their education.?


Practical Analysis in One Variable

Practical Analysis in One Variable

Author: Donald Estep

Publisher: Springer Science & Business Media

Published: 2006-04-06

Total Pages: 621

ISBN-13: 0387226443

DOWNLOAD EBOOK

This text places the basic ideas of real analysis and numerical analysis together in an applied setting that is both accessible and motivational to young students. The essentials of real analysis are presented in the context of a fundamental problem of applied mathematics, which is to approximate the solution of a physical model. The framework of existence, uniqueness, and methods to approximate solutions of model equations is sufficiently broad to introduce and motivate all the basic ideas of real analysis. The book includes background and review material, numerous examples, visualizations and alternate explanations of some key ideas, and a variety of exercises ranging from simple computations to analysis and estimates to computations on a computer.


Practical Numerical Methods with C#

Practical Numerical Methods with C#

Author: Jack Xu

Publisher: UniCAD

Published: 2019

Total Pages: 470

ISBN-13: 1695895576

DOWNLOAD EBOOK

The second edition of this book builds all the code example within a single project by incorporating new advancements in C# .NET technology and open-source math libraries. It also uses C# Interactive Window to test numerical computations without compiling or running the complete project code. The second edition includes three new chapters, including "Plotting", Fourier Analysis" and "Math Expression Parser". As in the first edition, this book presents an in-depth exposition of the various numerical methods used in real-world scientific and engineering computations. It emphasizes the practical aspects of C# numerical methods and mathematical functions programming, and discusses various techniques in details to enable you to implement these numerical methods in your .NET application. Ideal for scientists, engineers, and students who would like to become more adept at numerical methods, the second edition of this book covers the following content: - Overview of C# programming. - The mathematical background and fundamentals of numerical methods. - plotting the computation results using a 3D chart control. - Math libraries for complex numbers and functions, real and complex vector and matrix operations, and special functions. - Numerical methods for generating random numbers and random distribution functions. - Various numerical methods for solving linear and nonlinear equations. - Numerical differentiation and integration. - Interpolations and curve fitting. - Optimization of single-variable and multi-variable functions with a variety of techniques, including advanced simulated annealing and evolutionary algorithms. - Numerical techniques for solving ordinary differential equations. - Numerical methods for solving boundary value problems. - Eigenvalue problems. - Fourier analysis. - mathematical expression parser and evaluator. In addition, this book provides testing examples for every math function and numerical method to show you how to use these functions and methods in your own .NET applications in a manageable and step-by-step fashion. Please visit the author's website for more information about this book at https://drxudotnet.com https://drxudotnet.com and https://gincker.com.


Fundamentals of Engineering Numerical Analysis

Fundamentals of Engineering Numerical Analysis

Author: Parviz Moin

Publisher: Cambridge University Press

Published: 2010-08-23

Total Pages: 257

ISBN-13: 1139489550

DOWNLOAD EBOOK

Since the original publication of this book, available computer power has increased greatly. Today, scientific computing is playing an ever more prominent role as a tool in scientific discovery and engineering analysis. In this second edition, the key addition is an introduction to the finite element method. This is a widely used technique for solving partial differential equations (PDEs) in complex domains. This text introduces numerical methods and shows how to develop, analyse, and use them. Complete MATLAB programs for all the worked examples are now available at www.cambridge.org/Moin, and more than 30 exercises have been added. This thorough and practical book is intended as a first course in numerical analysis, primarily for new graduate students in engineering and physical science. Along with mastering the fundamentals of numerical methods, students will learn to write their own computer programs using standard numerical methods.


Practical Numerical and Scientific Computing with MATLAB® and Python

Practical Numerical and Scientific Computing with MATLAB® and Python

Author: Eihab B. M. Bashier

Publisher: CRC Press

Published: 2020-03-18

Total Pages: 349

ISBN-13: 0429666829

DOWNLOAD EBOOK

Practical Numerical and Scientific Computing with MATLAB® and Python concentrates on the practical aspects of numerical analysis and linear and non-linear programming. It discusses the methods for solving different types of mathematical problems using MATLAB and Python. Although the book focuses on the approximation problem rather than on error analysis of mathematical problems, it provides practical ways to calculate errors. The book is divided into three parts, covering topics in numerical linear algebra, methods of interpolation, numerical differentiation and integration, solutions of differential equations, linear and non-linear programming problems, and optimal control problems. This book has the following advantages: It adopts the programming languages, MATLAB and Python, which are widely used among academics, scientists, and engineers, for ease of use and contain many libraries covering many scientific and engineering fields. It contains topics that are rarely found in other numerical analysis books, such as ill-conditioned linear systems and methods of regularization to stabilize their solutions, nonstandard finite differences methods for solutions of ordinary differential equations, and the computations of the optimal controls. It provides a practical explanation of how to apply these topics using MATLAB and Python. It discusses software libraries to solve mathematical problems, such as software Gekko, pulp, and pyomo. These libraries use Python for solutions to differential equations and static and dynamic optimization problems. Most programs in the book can be applied in versions prior to MATLAB 2017b and Python 3.7.4 without the need to modify these programs. This book is aimed at newcomers and middle-level students, as well as members of the scientific community who are interested in solving math problems using MATLAB or Python.


Numerical Analysis Using R

Numerical Analysis Using R

Author: Graham W. Griffiths

Publisher: Cambridge University Press

Published: 2016-04-26

Total Pages: 637

ISBN-13: 131665415X

DOWNLOAD EBOOK

This book presents the latest numerical solutions to initial value problems and boundary value problems described by ODEs and PDEs. The author offers practical methods that can be adapted to solve wide ranges of problems and illustrates them in the increasingly popular open source computer language R, allowing integration with more statistically based methods. The book begins with standard techniques, followed by an overview of 'high resolution' flux limiters and WENO to solve problems with solutions exhibiting high gradient phenomena. Meshless methods using radial basis functions are then discussed in the context of scattered data interpolation and the solution of PDEs on irregular grids. Three detailed case studies demonstrate how numerical methods can be used to tackle very different complex problems. With its focus on practical solutions to real-world problems, this book will be useful to students and practitioners in all areas of science and engineering, especially those using R.


Numerical Analysis for Engineers and Scientists

Numerical Analysis for Engineers and Scientists

Author: G. Miller

Publisher: Cambridge University Press

Published: 2014-05-29

Total Pages: 583

ISBN-13: 1107021081

DOWNLOAD EBOOK

A graduate-level introduction balancing theory and application, providing full coverage of classical methods with many practical examples and demonstration programs.


Practical Numerical Analysis

Practical Numerical Analysis

Author: Gwynne Evans

Publisher:

Published: 1995

Total Pages: 480

ISBN-13:

DOWNLOAD EBOOK

Provides a thorough and comprehensive introduction to the major topics of numerical analysis, for example, the solution of linear and non-linear equations, eigenvalue problems, approximation theory, quadrature, the numerical solution of ordinary differential equations and partial differential equations, and optimization. Each chapter gives a sound graded introduction to the topic, followed by up-to-date coverage of the more advanced areas. Contains a wealth of exercises, with selected hints and answers, ranging from those soluble by hand or a simple calculator to more extensive computer-oriented examples.