Sample Size Calculations: Practical Methods for Engineers and Scientists presents power and sample size calculations for common statistical analyses including methods for means, standard deviations, proportions, counts, regression, correlation, and measures of agreement. Topics of special interest to quality engineering professionals include designed experiments, reliability studies, statistical process control, acceptance sampling, process capability analysis, statistical tolerancing, and gage error studies. The book emphasizes approximate methods, but exact methods are presented when the approximate methods fail. Monte Carlo and bootstrap methods are introduced for situations that don't satisfy the assumptions of the analytical methods. Solutions are presented for more than 170 example problems and solutions for selected example problems using PASS, MINITAB, Piface, and R are posted on the Internet.
Build the skills for determining appropriate error limits for quantities that matter with this essential toolkit. Understand how to handle a complete project and how uncertainty enters into various steps. Provides a systematic, worksheet-based process to determine error limits on measured quantities, and all likely sources of uncertainty are explored, measured or estimated. Features instructions on how to carry out error analysis using Excel and MATLAB®, making previously tedious calculations easy. Whether you are new to the sciences or an experienced engineer, this useful resource provides a practical approach to performing error analysis. Suitable as a text for a junior or senior level laboratory course in aerospace, chemical and mechanical engineering, and for professionals.
Practical Power Plant Engineering offers engineers, new to the profession, a guide to the methods of practical design, equipment selection and operation of power and heavy industrial plants as practiced by experienced engineers. The author—a noted expert on the topic—draws on decades of practical experience working in a number of industries with ever-changing technologies. This comprehensive book, written in 26 chapters, covers the electrical activities from plant design, development to commissioning. It is filled with descriptive examples, brief equipment data sheets, relay protection, engineering calculations, illustrations, and common-sense engineering approaches. The book explores the most relevant topics and reviews the industry standards and established engineering practices. For example, the author leads the reader through the application of MV switchgear, MV controllers, MCCs and distribution lines in building plant power distribution systems, including calculations of interrupting duty for breakers and contactors. The text also contains useful information on the various types of concentrated and photovoltaic solar plants as well as wind farms with DFIG turbines. This important book: • Explains why and how to select the proper ratings for electrical equipment for specific applications • Includes information on the critical requirements for designing power systems to meet the performance requirements • Presents tests of the electrical equipment that prove it is built to the required standards and will meet plant-specific operating requirements Written for both professional engineers early in their career and experienced engineers, Practical Power Plant Engineering is a must-have resource that offers the information needed to apply the concepts of power plant engineering in the real world.
For readers with some competence in PDE solution properties, this book offers an interdisciplinary approach to problems occurring in natural environmental media: the hydrosphere, atmosphere, cryosphere, lithosphere, biosphere and ionosphere. It presents two major discretization methods: Finite Difference and Finite Element, plus a section on practical approaches to ill-posed problems. The blend of theory, analysis, and implementation practicality supports solving and understanding complicated problems.
This databook is an essential handbook for every engineering student or professional.Engineers' Practical Databook provides a concise and useful source of up-to-date essential formula, charts, and data for the student or practising engineer, technologist, applied mathematician or undergraduate scientist. Unlike almost all other engineering handbooks out there, this one doesn't package itself as a heavy, expensive or cumbersome textbook, and doesn't contain any preamble or lengthy chapters of 'filler' material. You will find value cover-to-cover with all the essential formula, charts, and materials data. This handbook is suitable for use in support of Higher Education programmes, including Higher National Diplomas and accredited engineering degrees. Topics include the essentials of aerospace, civil, electrical and electronic, mechanical and general engineering. Chapters include Mathematics, Materials, Mechanics, Structures, Machines and Mechanisms, Electrical and Electronics, Thermodynamics, Fluid Mechanics, Systems, and Project Management. First Edition is in SI Units. - Easy to use - Chapters organised by module/discipline topic - Physical, geometric, thermal, chemical and electrical properties - All variables and units clearly defined - Essential technical data
An accessible guide to developing intuition and skills for solving mathematical problems in the physical sciences and engineering Equations play a central role in problem solving across various fields of study. Understanding what an equation means is an essential step toward forming an effective strategy to solve it, and it also lays the foundation for a more successful and fulfilling work experience. Thinking About Equations provides an accessible guide to developing an intuitive understanding of mathematical methods and, at the same time, presents a number of practical mathematical tools for successfully solving problems that arise in engineering and the physical sciences. Equations form the basis for nearly all numerical solutions, and the authors illustrate how a firm understanding of problem solving can lead to improved strategies for computational approaches. Eight succinct chapters provide thorough topical coverage, including: Approximation and estimation Isolating important variables Generalization and special cases Dimensional analysis and scaling Pictorial methods and graphical solutions Symmetry to simplify equations Each chapter contains a general discussion that is integrated with worked-out problems from various fields of study, including physics, engineering, applied mathematics, and physical chemistry. These examples illustrate the mathematical concepts and techniques that are frequently encountered when solving problems. To accelerate learning, the worked example problems are grouped by the equation-related concepts that they illustrate as opposed to subfields within science and mathematics, as in conventional treatments. In addition, each problem is accompanied by a comprehensive solution, explanation, and commentary, and numerous exercises at the end of each chapter provide an opportunity to test comprehension. Requiring only a working knowledge of basic calculus and introductory physics, Thinking About Equations is an excellent supplement for courses in engineering and the physical sciences at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers, practitioners, and educators in all branches of engineering, physics, chemistry, biophysics, and other related fields who encounter mathematical problems in their day-to-day work.
The Practice of Reservoir Engineering has been written for those in the oil industry requiring a working knowledge of how the complex subject of hydrocarbon reservoir engineering can be applied in the field in a practical manner. The book is a simple statement of how to do the job and is particularly suitable for reservoir/production engineers and is illustrated with 27 examples and exercises based mainly on actual field developments. It will also be useful for those associated with the subject of hydrocarbon recovery. Geoscientists, petrophysicists and those involved in the management of oil and gas fields will also find it particularly relevant.The new http://www.elsevier.nl/locate/isbn/0444506705 Practice of Reservoir Engineering Revised Edition will be available soon.