This book is devoted to innovative medicine, comprising the proceedings of the Uehara Memorial Foundation Symposium 2014. It remains extremely rare for the findings of basic research to be developed into clinical applications, and it takes a long time for the process to be achieved. The task of advancing the development of basic research into clinical reality lies with translational science, yet the field seems to struggle to find a way to move forward. To create innovative medical technology, many steps need to be taken: development and analysis of optimal animal models of human diseases, elucidation of genomic and epidemiological data, and establishment of “proof of concept”. There is also considerable demand for progress in drug research, new surgical procedures, and new clinical devices and equipment. While the original research target may be rare diseases, it is also important to apply those findings more broadly to common diseases. The book covers a wide range of topics and is organized into three complementary parts. The first part is basic research for innovative medicine, the second is translational research for innovative medicine, and the third is new technology for innovative medicine. This book helps to understand innovative medicine and to make progress in its realization.
The liver is an exceptionally complex and diverse organ that functions both as an exocrine and an endocrine gland. It secretes bile, which contains many con stituents in addition to bile salts, and it synthesizes and releases many substances in response to the body's demands, including prohormones, albumin, clotting factors, glucose, fatty acids, and various lipoproteins. It has a dual blood supply providing a rich mixture of nutrients and other absorbed substances via the portal vein and oxygen-rich blood via the hepatic artery. This functional heterogeneity is accompanied by cellular heterogeneity. The liver contains many cell types including hepatic parachymal cells, Kiipffer cells, Ito cells, and endothelial cells. The most abundant cell type, the parenchymal cells, are biochemically and structurally heterogeneous. The cells in the oxygen-rich areas of the portal triad appear more dependent on oxidative metabolism, whereas those around the central vein (pericentral, perivenous, or centrolobular areas) are more dependent upon an anaerobic mechanism. Throughout this volume the latter three terms are used synonymously by various authors to indicate the five to eight layers of cells radiating from the central vein. Structural and metabolic heterogeneity of hepatic parenchymal cells has been demonstrated by a variety of approaches, including histochemical, ultra structural, and ultramicrobiochemical studies. This microheterogeneity is linked to the physiological functions of the liver and its response to injurious substances.
Women and men have probably never been concerned as much by their health as during this COVID-19 pandemic. In this context, lifestyle habits continue to be promoted as allies for daily prevention against diseases. This is valid also for metabolic diseases, among which many affect the liver and are risk factors for aggravating the disease course of COVID-19. In fact, liver diseases are currently a major global health problem. There is a huge range of liver diseases and non-alcoholic fatty liver disease (NAFLD) is the most common chronic hepatic condition, which in some patients progresses to cirrhosis and liver cancer. Currently, substantial efforts are being made to better understand NAFLD, especially, because there is no U.S. Food and Drug Administration (FDA)-approved pharmacological therapy. To explore this disease, metabolomics is the most recently developed omics technology after genomics, transcriptomics, and proteomics. Metabolomics is the large-scale analysis of molecules, known as metabolites that are intermediate or end products of metabolism found within cells, tissues, and biofluids. This technology has a very high potential to identify biomarker candidates for the future development of new therapeutics. The book features articles that address metabolomics technology and its use to document different liver functions and dysfunctions, with a major focus on NAFLD.
This book highlights the important role free fatty acids (FFA) play as potential drug targets. While FFA have long been considered byproducts of cell metabolism, they are now recognized as ligands that regulate cell and tissue function via G-protein-coupled receptors. At least three receptors have been identified for which FFA appear to be the endogenous ligands.
This book serves as a comprehensive survey of the impact of vitamin K2 on cellular functions and organ systems, indicating that vitamin K2 plays an important role in the differentiation/preservation of various cell phenotypes and as a stimulator and/or mediator of interorgan cross talk. Vitamin K2 binds to the transcription factor SXR/PXR, thus acting like a hormone (very much in the same manner as vitamin A and vitamin D). Therefore, vitamin K2 affects a multitude of organ systems, and it is reckoned to be one positive factor in bringing about "longevity" to the human body, e.g., supporting the functions/health of different organ systems, as well as correcting the functioning or even "curing" ailments striking several organs in our body. Vitamin K2 - Vital for Health and Wellbeing has been produced and distributed through the support from Kappa Bioscience, Norway.
Autoxidation of unsaturated lipids has received much attention because it has many applications in the rancidity of foods and stability of lipids in biological tissues and compartments. This book reviews state-of-the-art developments in the understanding of the oxidation of lipids and its connection with the oxidation of other biological molecules such as proteins and starch. The various chapters illustrate the special features associated with different lipids, antioxidants, reaction conditions, and lipids environments. The material in this book provides a better understanding of lipid oxidation pathways.
For physicians and surgeons entrusted with the care of patients with morbid obesity and related diseases; also for nurses and other professionals on the team. „Principles of Metabolic Surgery“ delivers a succinct account of current knowledge and an excellent overview of modern treatment strategies for morbid obesity. Attractively designed, this user-friendly textbook provides the latest on therapy, monitoring, and management, including: -Completely up-to-date coverage of modern metabolic surgery -Current understanding of the pathophysiology of morbid obesity -Current clinical therapy strategies for conservative and surgical approaches -Recent references In concise, readable chapters, this well-illustrated textbook outlines major concerns and considerations surrounding metabolic surgery. With respect to new insights from basic and clinical research, clear guidelines and practical clinical advice are given to improve the outcome of treatment for morbid obesity.
This is the second edition of a very well received book that details how the sumoylation system functions and how it modulates numerous cellular activities. SUMO is a post-translational modifier in the ubiquitin super-family that has gained recognition over the last twenty years as an essential and prevalent regulatory molecule. Individual chapters explore the biochemistry, molecular biology, and cell biology of the sumoylation system and its substrate proteins. The book is divided into three themed parts: Molecular Functions (I), Cell Growth Regulation (II), and Diseases (III). Parts I and II focus on the contribution of sumoylation to cellular activities in both the nuclear and cytoplasmic compartments. The nuclear activities covered include nucleic acid metabolism (both RNA and DNA), chromosome structure and replication, and nucleocytoplasmic transport. Cytoplasmic processes presented include regulation of membrane ion channels, general metabolism, and apoptotic signalling. Topics in Part III include the role of sumoylation in developmental abnormalities (craniofacial and cardiovascular), diabetes, neurodegenerative diseases, cancer, and infections with viruses and bacteria. Each of the corresponding chapter authors is an active researcher who has made significant contributions to understanding sumoylation. This second edition provides updates and revisions to most of the original chapters plus adds six new chapters to address important developing areas of sumoylation research. This volume is intended for a scientific audience from undergraduates to independent researchers. The content will serve as both a solid introduction for the novice reader and an in depth treatment for the advanced scholar.
This book deals with a vital topic: metabolism in the cells of the body and various disorders due to its imbalance and/or diseases that disrupt the metabolism of the body. The objective of this book was to collect and compile up-to-date information from reputed researchers in their respective fields to disseminate the latest information about topics that have profound effects on the metabolic processes in the body including insulin resistance, diabetes mellitus, hypothyroidism, metabolic syndrome, glycogen storage disease, and the urea cycle disorder. In total, there are 12 chapters in this book in which the authors have shared their research findings and real-life experiences in managing their patients.