Power System Simulation Using Semi-Analytical Methods

Power System Simulation Using Semi-Analytical Methods

Author: Kai Sun

Publisher: John Wiley & Sons

Published: 2023-10-03

Total Pages: 372

ISBN-13: 1119988012

DOWNLOAD EBOOK

Robust coverage of semi-analytical and traditional numerical methods for power system simulation In Power System Simulation Using Semi-Analytical Methods, distinguished researcher Dr. Kai Sun delivers a comprehensive treatment of semi-analytical simulation and current semi-analytical methods for power systems. The book presents semi-analytical solutions on power system dynamics via mathematical tools, and covers parallel contingency analysis and simulations. The author offers an overview of power system simulation and contingency analysis supported by data, tables, illustrations, and case studies on realistic power systems and experiments. Readers will find open-source code in MATLAB along with examples for key algorithms introduced in the book. You’ll also find: A thorough background on power system simulation, including models, numerical solution methods, and semi-analytical solution methods Comprehensive explorations of semi-analytical power system simulation via a variety of mathematical methods such as the Adomian decomposition, differential transformation, homotopy analysis and holomorphic embedding methods. Practical discussions of semi-analytical simulations for realistic large-scale power grids Fulsome treatments of parallel power system simulation Perfect for power engineers and applied mathematicians with an interest in high-performance simulation of power systems and other large-scale network systems, Power System Simulation Using Semi-Analytical Methods will also benefit researchers and postgraduate students studying power system engineering.


Towards Faster-than-real-time Power System Simulation Using a Semi-analytical Approach and High-performance Computing

Towards Faster-than-real-time Power System Simulation Using a Semi-analytical Approach and High-performance Computing

Author: Electrical engineer Duan

Publisher:

Published: 2018

Total Pages: 164

ISBN-13:

DOWNLOAD EBOOK

This dissertation investigates two possible directions of achieving faster-than-real-time simulation of power systems. The first direction is to develop a semi-analytical solution which represents the nonlinear dynamic characteristics of power systems in a limited time period. The second direction is to develop a parallel simulation scheme which allows the local numerical solutions of power systems to be developed independently in consecutive time intervals and then iteratively corrected toward the accurate global solution through the entire simulation time period. For the first direction, the semi-analytical solution is acquired using Adomian decomposition method (ADM). The ADM assumes the analytical solution of any nonlinear system can be decomposed into the summation of infinite analytical expressions. Those expressions are derived recursively using the system differential equations. By only keeping a finite number of those analytical expressions, an approximation of the analytical solution is yielded, which is defined as a semi-analytical solution. The semi-analytical solutions can be developed offline and evaluated online to facilitate the speedup of simulations. A parallel implementation and variable time window approach for the online evaluation stage are proposed in addition to the time performance analysis. For the second direction, the Parareal-in-time algorithm is tested for power system simulation. Parareal is essentially a multiple shooting method. It decomposes the simulation time into coarse time intervals and then fine time intervals within each coarse interval. The numerical integration uses a computational cheap solver on the coarse time grid and an expensive solver on the fine time grids. The solution within each coarse interval is propagated independently using the fine solver. The mismatch of the solution between the coarse solution and fine solution is corrected iteratively. The theoretical speedup can be achieved is the ratio of the coarse interval number and iteration number. In this dissertation, the Parareal algorithm is tested on the North American eastern interconnection system with around 70,000 buses and 5,000 generators.


Power System Simulation

Power System Simulation

Author: J.P. Barret

Publisher: Springer Science & Business Media

Published: 1996-12-31

Total Pages: 312

ISBN-13: 9780412638701

DOWNLOAD EBOOK

The authors, writing with the experience and technological background of Electricite de France, an organisation at the forefront of simulation methods, provide a comprehensive and comprehensible treatment of the modelling and simulation techniques currently in use. The text emphasises model design applied to power plants producing energy, generators and motors carrying out energy transformations and networks transmitting energy. The systems are analysed considering each process, from steady state to fast transients, with detailed explanation of the problem to be solved, the choice of models and methods for optimising efficiency. Many examples and references are provided. The book is essential reading for anyone involved in power system engineering, from practising design and development engineers to researchers and postgraduate and advanced graduate students.


Power System Dynamics

Power System Dynamics

Author: Ramanujam, R.

Publisher: PHI Learning Pvt. Ltd.

Published: 2010

Total Pages: 529

ISBN-13: 8120335252

DOWNLOAD EBOOK

This comprehensive text offers a detailed treatment of modelling of components and sub-systems for studying the transient and dynamic stability of large-scale power systems. Beginning with an overview of basic concepts of stability of simple systems, the book is devoted to in-depth coverage of modelling of synchronous machine and its excitation systems and speed governing controllers. Apart from covering the modelling aspects, methods of interfacing component models for the analysis of small-signal stability of power systems are presented in an easy-to-understand manner. The book also offers a study of simulation of transient stability of power systems as well as electromagnetic transients involving synchronous machines. Practical data pertaining to power systems, numerical examples and derivations are interspersed throughout the text to give students practice in applying key concepts. This text serves as a well-knit introduction to Power System Dynamics and is suitable for a one-semester course for the senior-level undergraduate students of electrical engineering and postgraduate students specializing in Power Systems. Contents: contents Preface 1. ONCE OVER LIGHTLY 2. POWER SYSTEM STABILITY—ELEMENTARY ANALYSIS 3. SYNCHRONOUS MACHINE MODELLING FOR POWER SYSTEM DYNAMICS 4. MODELLING OF OTHER COMPONENTS FOR DYNAMIC ANALYSIS 5. OVERVIEW OF NUMERICAL METHODS 6. SMALL-SIGNAL STABILITY ANALYSIS OF POWER SYSTEMS 7. TRANSIENT STABILITY ANALYSIS OF POWER SYSTEMS 8. SUBSYNCHRONOUS AND TORSIONAL OSCILLATIONS 9. ENHANCEMENT AND COUNTERMEASURES Index


PowerFactory Applications for Power System Analysis

PowerFactory Applications for Power System Analysis

Author: Francisco M. Gonzalez-Longatt

Publisher: Springer

Published: 2014-12-27

Total Pages: 496

ISBN-13: 3319129589

DOWNLOAD EBOOK

This book presents a comprehensive set of guidelines and applications of DIgSILENT PowerFactory, an advanced power system simulation software package, for different types of power systems studies. Written by specialists in the field, it combines expertise and years of experience in the use of DIgSILENT PowerFactory with a deep understanding of power systems analysis. These complementary approaches therefore provide a fresh perspective on how to model, simulate and analyse power systems. It presents methodological approaches for modelling of system components, including both classical and non-conventional devices used in generation, transmission and distribution systems, discussing relevant assumptions and implications on performance assessment. This background is complemented with several guidelines for advanced use of DSL and DPL languages as well as for interfacing with other software packages, which is of great value for creating and performing different types of steady-state and dynamic performance simulation analysis. All employed test case studies are provided as supporting material to the reader to ease recreation of all examples presented in the book as well as to facilitate their use in other cases related to planning and operation studies. Providing an invaluable resource for the formal instruction of power system undergraduate/postgraduate students, this book is also a useful reference for engineers working in power system operation and planning.


Advanced Power System Analysis and Dynamics

Advanced Power System Analysis and Dynamics

Author: L.P. Singh

Publisher: New Age International

Published: 2006

Total Pages: 540

ISBN-13: 9788122417326

DOWNLOAD EBOOK

This Book Is A Result Of Teaching Courses In The Areas Of Computer Methods In Power Systems, Digital Simulation Of Power Systems, Power System Dynamics And Advanced Protective Relaying To The Undergraduate And Graduate Students In Electrical Engineering At I.I.T., Kanpur For A Number Of Years And Guiding Several Ph.D. And M.Tech. Thesis And B.Tech. Projects By The Author. The Contents Of The Book Are Also Tested In Several Industrial And Qip Sponsored Courses Conducted By The Author As A Coordinator. The Present Edition Includes A Sub-Section On Solution Procedure To Include Transmission Losses Using Dynamic Programming In The Chapter On Economic Load Scheduling Of Power System. In This Edition An Additional Chapter On Load Forecasting Has Also Been Included. The Present Book Deals With Almost All The Aspects Of Modern Power System Analysis Such As Network Equations And Its Formulations, Graph Theory, Symmetries Inherent In Power System Components And Its Formulations, Graph Theory, Symmetries Inherent In Power System Components And Development Of Transformation Matrices Based Solely Upon Symmetries, Feasibility Analysis And Modeling Of Multi-Phase Systems, Power System Modeling Including Detailed Analysis Of Synchronous Machines, Induction Machines And Composite Loads, Sparsity Techniques, Economic Operation Of Power Systems Including Derivation Of Transmission Loss Equation From The Fundamental, Solution Of Algebraic And Differential Equations And Power System Studies Such As Load Flow, Fault Analysis And Transient Stability Studies Of A Large Scale Power System Including Modern And Related Topics Such As Advanced Protective Relaying, Digital Protection And Load Forecasting. The Book Contains Solved Examples In These Areas And Also Flow Diagrams Which Will Help On One Hand To Understand The Theory And On The Other Hand, It Will Help The Simulation Of Large Scale Power Systems On The Digital Computer. The Book Will Be Easy To Read And Understand And Will Be Useful To Both Undergraduate And Graduate Students In Electrical Engineering As Well As To The Engineers Working In Electricity Boards And Utilities Etc.


Power System Analysis : A Dynamic Perspective

Power System Analysis : A Dynamic Perspective

Author: K N Shubhanga

Publisher: Pearson Education India

Published:

Total Pages: 810

ISBN-13: 9353063698

DOWNLOAD EBOOK

Power System Analysis: A Dynamic Perspective a text designed to serve as a bridge between the undergraduate course on power systems and the complex modelling and computational tools used in the dynamic analysis of practical power systems. With extensive teaching and research experience in the field, the author presents fundamental and advanced concepts using rigorous mathematical analysis and extensive time-domain simulation results. The text also includes numerous plots with clear explanation for easy understanding.


SKM, ETAP, and EDSA Power System Analysis Tutorials

SKM, ETAP, and EDSA Power System Analysis Tutorials

Author: Stephen Philip Tubbs

Publisher:

Published: 2009-05

Total Pages: 156

ISBN-13: 9780981975306

DOWNLOAD EBOOK

The object of this book is to teach the beginner the basics of three popular power system analysis programs. These programs are designed to simulate and analyze electrical power generation and distribution systems in normal operation and in short-circuit. The programs also have many add-on options like protection selection, arc flash analysis, transmission line sag & tension, raceway calculations, transient motor starting, etc. The programs have Demo (demonstration or trial) versions to allow people to tryout and learn about them. This book provides the engineer and technologist with information needed to use the Demo versions of SKM, ETAP, and EDSA for load flow and short-circuit analysis. The beginner learns how to use them on a small, but realistic, three-phase power system. The information gained is similar to that which students pay for in company-taught "Introduction to ..." courses. However, with this book, the student avoids paying tuition, learns at times of his own convenience, and can compare the different programs. In this book, load flow (power-flow) and short-circuit analyses are done on a small steady-state three-phase power system with manual methods. Then, each program is used to carry out the same analyses. Since in practice, three-phase systems are the most often analyzed, only three-phase systems will be considered in this book. The DC and single-phase capabilities of the programs will not be considered. The person using this book should already have an analytical electrical background. Academically, he should be educated to at least the level of a university two-year electrical engineering technology program.


Power System Modelling and Scripting

Power System Modelling and Scripting

Author: Federico Milano

Publisher: Springer Science & Business Media

Published: 2010-09-08

Total Pages: 558

ISBN-13: 3642136699

DOWNLOAD EBOOK

Power system modelling and scripting is a quite general and ambitious title. Of course, to embrace all existing aspects of power system modelling would lead to an encyclopedia and would be likely an impossible task. Thus, the book focuses on a subset of power system models based on the following assumptions: (i) devices are modelled as a set of nonlinear differential algebraic equations, (ii) all alternate-current devices are operating in three-phase balanced fundamental frequency, and (iii) the time frame of the dynamics of interest ranges from tenths to tens of seconds. These assumptions basically restrict the analysis to transient stability phenomena and generator controls. The modelling step is not self-sufficient. Mathematical models have to be translated into computer programming code in order to be analyzed, understood and “experienced”. It is an object of the book to provide a general framework for a power system analysis software tool and hints for filling up this framework with versatile programming code. This book is for all students and researchers that are looking for a quick reference on power system models or need some guidelines for starting the challenging adventure of writing their own code.