Designing Power Supplies for Valve Amplifiers is a unique guide to the operation and practical design of linear power supplies, especially for valve equipment. Audiophiles, guitarists and general hobbyists alike will find this book an invaluable source of detailed information on transformers, rectifiers, smoothing, high-voltage series and shunt regulators, and much more. Although this book is not intended for the beginner, learning is encouraged through practical design, and concepts are introduced at a basic level before the reader is accelerated to the stage of high-performance design, with over 200 circuit diagrams and figures. Numerous practical circuits are included, for high-voltage stabilisers, heater regulators, optimised bias circuits, high-voltage supplies using 'junk box' parts, and even audio power control for guitar amplifiers. An essential handbook for any valve amplifier enthusiast!
This comprehensive book on audio power amplifier design will appeal to members of the professional audio engineering community as well as the student and enthusiast. Designing Audio Power Amplifiersbegins with power amplifier design basics that a novice can understand and moves all the way through to in-depth design techniques for very sophisticated audiophiles and professional audio power amplifiers. This book is the single best source of knowledge for anyone who wishes to design audio power amplifiers. It also provides a detailed introduction to nearly all aspects of analog circuit design, making it an effective educational text. Develop and hone your audio amplifier design skills with in-depth coverage of these and other topics: Basic and advanced audio power amplifier design Low-noise amplifier design Static and dynamic crossover distortion demystified Understanding negative feedback and the controversy surrounding it Advanced NFB compensation techniques, including TPC and TMC Sophisticated DC servo design MOSFET power amplifiers and error correction Audio measurements and instrumentation Overlooked sources of distortion SPICE simulation for audio amplifiers, including a tutorial on LTspice SPICE transistor modeling, including the VDMOS model for power MOSFETs Thermal design and the use of ThermalTrak(tm) transistors Four chapters on class D amplifiers, including measurement techniques Professional power amplifiers Switch-mode power supplies (SMPS). design Static and dynamic crossover distortion demystified Understanding negative feedback and the controversy surrounding it Advanced NFB compensation techniques, including TPC and TMC Sophisticated DC servo design MOSFET power amplifiers and error correction Audio measurements and instrumentation Overlooked sources of distortion SPICE simulation for audio amplifiers, including a tutorial on LTspice SPICE transistor modeling, including the VDMOS model for power MOSFETs Thermal design and the use of ThermalTrak(tm) transistors Four chapters on class D amplifiers, including measurement techniques Professional power amplifiers Switch-mode power supplies (SMPS). the use of ThermalTrak(tm) transistors Four chapters on class D amplifiers, including measurement techniques Professional power amplifiers Switch-mode power supplies (SMPS).
This book is essential for audio power amplifier designers and engineers for one simple reason...it enables you as a professional to develop reliable, high-performance circuits. The Author Douglas Self covers the major issues of distortion and linearity, power supplies, overload, DC-protection and reactive loading. He also tackles unusual forms of compensation and distortion produced by capacitors and fuses. This completely updated fifth edition includes four NEW chapters including one on The XD Principle, invented by the author, and used by Cambridge Audio. Crosstalk, power amplifier input systems, and microcontrollers in amplifiers are also now discussed in this fifth edition, making this book a must-have for audio power amplifier professionals and audiophiles.
Small Signal Audio Design is a highly practical handbook providing an extensive repertoire of circuits that can be assembled to make almost any type of audio system. The publication of Electronics for Vinyl has freed up space for new material, (though this book still contains a lot on moving-magnet and moving-coil electronics) and this fully revised third edition offers wholly new chapters on tape machines, guitar electronics, and variable-gain amplifiers, plus much more. A major theme is the use of inexpensive and readily available parts to obtain state-of-the-art performance for noise, distortion, crosstalk, frequency response accuracy and other parameters. Virtually every page reveals nuggets of specialized knowledge not found anywhere else. For example, you can improve the offness of a fader simply by adding a resistor in the right place- if you know the right place. Essential points of theory that bear on practical audio performance are lucidly and thoroughly explained, with the mathematics kept to an absolute minimum. Self’s background in design for manufacture ensures he keeps a wary eye on the cost of things. This book features the engaging prose style familiar to readers of his other books. You will learn why mercury-filled cables are not a good idea, the pitfalls of plating gold on copper, and what quotes from Star Trek have to do with PCB design. Learn how to: make amplifiers with apparently impossibly low noise design discrete circuitry that can handle enormous signals with vanishingly low distortion use humble low-gain transistors to make an amplifier with an input impedance of more than 50 megohms transform the performance of low-cost-opamps build active filters with very low noise and distortion make incredibly accurate volume controls make a huge variety of audio equalisers make magnetic cartridge preamplifiers that have noise so low it is limited by basic physics, by using load synthesis sum, switch, clip, compress, and route audio signals be confident that phase perception is not an issue This expanded and updated third edition contains extensive new material on optimising RIAA equalisation, electronics for ribbon microphones, summation of noise sources, defining system frequency response, loudness controls, and much more. Including all the crucial theory, but with minimal mathematics, Small Signal Audio Design is the must-have companion for anyone studying, researching, or working in audio engineering and audio electronics.
"Power is dissipated (lost) when this current flows through any resistance, which includes the amplifier's transistor. This dissipated power is the product of the current in the load times the voltage difference between the supply voltage to the amplifier and the output signal voltage. When the voltage supplied to the amplifier is a constant value, and by far the most common design practice, the situation in Fig. 1-2a results. Power dissipation in the amplifier is maximum when the output signal voltage is 1/2 of the supply voltage. When the output signal voltage is higher, even though the current value is larger the voltage drop is less and the power dissipation is lower. Similarly, when the output signal voltage is small, even though the voltage drop is now large the current in the load is smaller and again the power dissipation is lower"--
Preface; Introduction and general survey; History, architecture and negative feedback; The general principles of power amplifiers; The small signal stages; The Class-B output stage; The output stage II; Compensation, slew-rate, and stability; Power supplies and PSRR; Class-A power amplifiers; Class D power amplifiers; Class-G power amplifiers; FET output stages; Thermal compensation and thermal dynamics; Amplifier and loudspeaker protection; Grounding and practical matters; Testing and safety; Index.
Power Supply Cookbook, Second Edition provides an easy-to-follow, step-by-step design framework for a wide variety of power supplies. With this book, anyone with a basic knowledge of electronics can create a very complicated power supply design in less than one day. With the common industry design approaches presented in each section, this unique book allows the reader to design linear, switching, and quasi-resonant switching power supplies in an organized fashion. Formerly complicated design topics such as magnetics, feedback loop compensation design, and EMI/RFI control are all described in simple language and design steps. This book also details easy-to-modify design examples that provide the reader with a design template useful for creating a variety of power supplies. This newly revised edition is a practical, "start-to-finish" design reference. It is organized to allow both seasoned and inexperienced engineers to quickly find and apply the information they need. Features of the new edition include updated information on the design of the output stages, selecting the controller IC, and other functions associated with power supplies, such as: switching power supply control, synchronization of the power supply to an external source, input low voltage inhibitors, loss of power signals, output voltage shut-down, major current loops, and paralleling filter capacitors. It also offers coverage of waveshaping techniques, major loss reduction techniques, snubbers, and quasi-resonant converters. - Guides engineers through a step-by-step design framework for a wide variety of power supplies, many of which can be designed in less than one day - Provides easy-to-understand information about often complicated topics, making power supply design a much more accessible and enjoyable process
The World's #1 Guide to Power Supply Design Now Updated! Recognized worldwide as the definitive guide to power supply design for over 25 years, Switching Power Supply Design has been updated to cover the latest innovations in technology, materials, and components. This Third Edition presents the basic principles of the most commonly used topologies, providing you with the essential information required to design cutting-edge power supplies. Using a tutorial, how-and-why approach, this expert resource is filled with design examples, equations, and charts. The Third Edition of Switching Power Supply Design features: Designs for many of the most useful switching power supply topologies The core principles required to solve day-to-day design problems A strong focus on the essential basics of transformer and magnetics design New to this edition: a full chapter on choke design and optimum drive conditions for modern fast IGBTs Get Everything You Need to Design a Complete Switching Power Supply: Fundamental Switching Regulators * Push-Pull and Forward Converter Topologies * Half- and Full-Bridge Converter Topologies * Flyback Converter Topologies * Current-Mode and Current-Fed Topologies * Miscellaneous Topologies * Transformer and Magnetics Design * High-Frequency Choke Design * Optimum Drive Conditions for Bipolar Power Transistors, MOSFETs, Power Transistors, and IGBTs * Drive Circuits for Magnetic Amplifiers * Postregulators * Turn-on, Turn-off Switching Losses and Low Loss Snubbers * Feedback-Loop Stabilization * Resonant Converter Waveforms * Power Factor and Power Factor Correction * High-Frequency Power Sources for Fluorescent Lamps, and Low-Input-Voltage Regulators for Laptop Computers and Portable Equipment
A majority of people now have a digital mobile device whether it be a cell phone, laptop, or blackberry. Now that we have the mobility we want it to be more versatile and dependable; RF power amplifiers accomplish just that. These amplifiers take a small input and make it stronger and larger creating a wider area of use with a more robust signal.Switching mode RF amplifiers have been theoretically possible for decades, but were largely impractical because they distort analog signals until they are unrecognizable. However, distortion is not an issue with digital signals—like those used by WLANs and digital cell phones—and switching mode RF amplifiers have become a hot area of RF/wireless design. This book explores both the theory behind switching mode RF amplifiers and design techniques for them.*Provides essential design and implementation techniques for use in cma2000, WiMAX, and other digital mobile standards*Both authors have written several articles on the topic and are well known in the industry*Includes specific design equations to greatly simplify the design of switchmode amplifiers