Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion

Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion

Author: Mary D. Archer

Publisher: World Scientific

Published: 2008

Total Pages: 781

ISBN-13: 1860942555

DOWNLOAD EBOOK

In this book, expert authors describe advanced solar photon conversion approaches that promise highly efficient photovoltaic and photoelectrochemical cells with sophisticated architectures on the one hand, and plastic photovoltaic coatings that are inexpensive enough to be disposable on the other. Their leitmotifs include light-induced exciton generation, junction architectures that lead to efficient exciton dissociation, and charge collection by percolation through mesoscale phases. Photocatalysis is closely related to photoelectrochemistry, and the fundamentals of both disciplines are covered in this volume.


Fundamentals of Solar Cell Design

Fundamentals of Solar Cell Design

Author: Inamuddin

Publisher: John Wiley & Sons

Published: 2021-08-24

Total Pages: 578

ISBN-13: 1119724708

DOWNLOAD EBOOK

Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.


Solar Cells and Their Applications

Solar Cells and Their Applications

Author: Lewis M. Fraas

Publisher: Wiley

Published: 2010-07-13

Total Pages: 700

ISBN-13: 0470636874

DOWNLOAD EBOOK

A major update of solar cell technology and the solar marketplace Since the first publication of this important volume over a decade ago, dramatic changes have taken place with the solar market growing almost 100-fold and the U.S. moving from first to fourth place in the world market as analyzed in this Second Edition. Three bold new opportunities are identified for any countries wanting to improve market position. The first is combining pin solar cells with 3X concentration to achieve economic competitiveness near term. The second is charging battery-powered cars with solar cell–generated electricity from arrays in surrounding areas—including the car owners' homes—while simultaneously reducing their home electricity bills by over ninety percent. The third is formation of economic "unions" of sufficient combined economic size to be major competitors. In this updated edition, feed-in tariffs are identified as the most effective approach for public policy. Reasons are provided to explain why pin solar cells outperform more traditional pn solar cells. Field test data are reported for nineteen percent pin solar cells and for ~500X concentrating systems with bare cell efficiencies approaching forty percent. Paths to bare cell efficiencies over fifty percent are described, and key missing program elements are identified. Since government support is needed for new technology prototype integration and qualification testing before manufacturing scale up, the key economic measure is identified in this volume as the electricity cost in cents per kilowatt-hour at the complete installed system level, rather than just the up-front solar cell modules' costs in dollars per watt. This Second Edition will benefit technologists in the fields of solar cells and systems; solar cell researchers; power systems designers; academics studying microelectronics, semiconductors, and solar cells; business students and investors with a technical focus; and government and political officials developing public policy.


Dye-Sensitized Solar Cells

Dye-Sensitized Solar Cells

Author: Adarsh Kumar Pandey

Publisher: Academic Press

Published: 2021-10-23

Total Pages: 259

ISBN-13: 0128182075

DOWNLOAD EBOOK

Dye-Sensitized Solar Cells: Emerging Trends and Advanced Applications is highly focused on addressing all aspects of dye sensitized solar cell technology. In this book, the authors present systematic analysis and working principles and detailed studies of individual components, manufacturing methods, software assisted design surrounding the technology market, commercialization potential, and performance evaluations and detailed fabrication methods and parameters. As there is no specific book which could encircle all the aspects of dye sensitized solar cells from its very basic working principles to advanced approached to improve it efficiency, this book fills that gap. Providing a comprehensive study on dye sensitized solar cells, this reference covers basic working principles to advanced approaches in improving efficiency as well as thermodynamic and kinetic studies. It will be ideal for advanced stage researchers and engineers looking to get a grip on DSSC technology. - Provides a compilation of all-important principles and advanced research in the field of dye sensitized solar cells - Specifies constituents of each DSSC, from basic to advanced level - Details advances in fabrication and software assisted design of DSSC


Solar Cell Device Physics

Solar Cell Device Physics

Author: Stephen J. Fonash

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 353

ISBN-13: 0323154638

DOWNLOAD EBOOK

Solar Cell Device Physics offers a balanced, in-depth qualitative and quantitative treatment of the physical principles and operating characteristics of solar cell devices. Topics covered include photovoltaic energy conversion and solar cell materials and structures, along with homojunction solar cells. Semiconductor-semiconductor heterojunction cells and surface-barrier solar cells are also discussed. This book consists of six chapters and begins by introducing the reader to the basic physical principles and materials properties that are the foundations of photovoltaic energy conversion, with emphasis on various photovoltaic devices capable of efficiently converting solar energy into usable electrical energy. The electronic and optical properties of crystalline, polycrystalline, and amorphous materials with both organic and inorganic materials are considered, together with the manner in which these properties change from one material class to another and the implications of such changes for photovoltaics. Generation, recombination, and bulk transport are also discussed. The two mechanisms of photocarrier collection in solar cells, drift and diffusion, are then compared. The remaining chapters focus on specific solar cell device classes defined in terms of the interface structure employed: homojunctions, semiconductor-semiconductor heterojunctions, and surface-barrier devices. This monograph is appropriate for use as a textbook for graduate students in engineering and the sciences and for seniors in electrical engineering and applied physics, as well as a reference book for those actively involved in solar cell research and development.


Encyclopedia of Renewable Energy, Sustainability and the Environment

Encyclopedia of Renewable Energy, Sustainability and the Environment

Author:

Publisher: Elsevier

Published: 2024-08-09

Total Pages: 4061

ISBN-13: 0323939414

DOWNLOAD EBOOK

Encyclopedia of Renewable Energy, Sustainability and the Environment, Four Volume Set comprehensively covers all renewable energy resources, including wind, solar, hydro, biomass, geothermal energy, and nuclear power, to name a few. In addition to covering the breadth of renewable energy resources at a fundamental level, this encyclopedia delves into the utilization and ideal applications of each resource and assesses them from environmental, economic, and policy standpoints. This book will serve as an ideal introduction to any renewable energy source for students, while also allowing them to learn about a topic in more depth and explore related topics, all in a single resource.Instructors, researchers, and industry professionals will also benefit from this comprehensive reference. - Covers all renewable energy technologies in one comprehensive resource - Details renewable energies' processes, from production to utilization in a single encyclopedia - Organizes topics into concise, consistently formatted chapters, perfect for readers who are new to the field - Assesses economic challenges faced to implement each type of renewable energy - Addresses the challenges of replacing fossil fuels with renewables and covers the environmental impacts of each renewable energy


Dye-sensitized Solar Cells

Dye-sensitized Solar Cells

Author: Songyuan Dai

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2022-07-05

Total Pages: 706

ISBN-13: 311038373X

DOWNLOAD EBOOK

The operation of everything in the universe needs a special „material“-energy. The earth is no exception. There are many kinds of energy sources on earth. But where does the earth‘s energy come from? The answer is that everything grows under the sun. Developing renewable energy is of strategic importance to achieve sustainable energy supply. Simulating natural photosynthesis is the ultimate goal of effi cient solar energy conversion. Photovoltaic technology has been widely used in industry and will be one of the major energy sources in the future. Developing new materials and structures, the photoelectric conversion effi ciency of solar cells will be improved day by day, and solar cells will attract more and more attention. This book presents principles of solar photovoltaic conversion, and introduces the physical and chemical processes involved. Mechanisms which affect solar cell performance are also discussed.


Dye-Sensitized Solar Cells

Dye-Sensitized Solar Cells

Author: Masoud Soroush

Publisher: Academic Press

Published: 2019-03-01

Total Pages: 0

ISBN-13: 9780128145418

DOWNLOAD EBOOK

Dye-Sensitized Solar Cells: Mathematical Modelling and Materials Design and Optimization presents the latest information as edited from leaders in the field. It covers advances in DSSC design, fabrication and mathematical modelling and optimization, providing a comprehensive coverage of various DSSC advances that includes different system scales, from electronic to macroscopic level, and a consolidation of the results with fundamentals. The book is extremely useful as a monograph for graduate students and researchers, but is also a comprehensive, general reference on state-of-the-art techniques in modelling, optimization and design of DSSCs.


The Future for Renewable Energy 2

The Future for Renewable Energy 2

Author: EUREC Agency

Publisher: Routledge

Published: 2013-07-04

Total Pages: 269

ISBN-13: 1134276389

DOWNLOAD EBOOK

The ability of renewable energy sources to supply global energy needs - if not completely then to a significant degree - has been amply demonstrated. What needs to happen now in order to make large-scale implementation possible? Leading researchers and specialists in the various fields of renewable energy have once again been commissioned by EUREC Agency (the European Union Renewable Energy Centres Agency) to completely re-assess the position of renewable energy technologies in the context of global energy supply, and to recommend a development path for each technology branch based on this analysis. The Future for Renewable Energy 2 presents the results of this extensive research, incorporating the findings of specialists from over 40 renewable energy research institutes, which represent in total over 1000 scientists. The Future for Renewable Energy 2 examines each of the major renewable energy technologies. It provides a qualitative evaluation of their achievements to date, proposes for each sector detailed, realistic goals for a strong and coherent research, development and demonstration (RD&D) policy, and maps out a path to a stronger market and more widespread deployment of renewable energy sources. Individual chapters cover biomass, photovoltaics, small hydro, solar buildings, solar thermal power stations, wind energy and solar process heat as well as other renewables including ocean energy and solar chemistry. Further chapters discuss the integration of these various technologies and their uptake by developing countries. Essential reading for energy policy makers and planners, and for all those involved in renewables whether as researchers, manufacturers, utilities or practitioners, The Future for Renewable Energy 2 will be regarded as a critical and authoritative source for strategic planning of renewable energy development worldwide.


Counter Electrode for Dye¿sensitized Solar Cells

Counter Electrode for Dye¿sensitized Solar Cells

Author: Alagarsamy Pandikumar

Publisher:

Published: 2021-06-25

Total Pages: 350

ISBN-13: 9789814877381

DOWNLOAD EBOOK

Renewable energies have become an attractive option to overcome the energy demands in sustainable and affordable ways. It has been estimated that one-third of the total renewable energies would be generated from photovoltaics (PVs). A solar or PV cell is a device that directly converts sunlight into electricity by taking benefit of the photoelectric effect. In the third-generation solar PVs, dye-sensitized solar cells (DSSCs) are believed to be the most promising and have attracted wide attention. The optimization of a DSSC is focused on four main components: (i) metal oxide semiconductor, (ii) photosensitizer, (iii) redox couple electrolyte, and (iv) counter electrode. Among these, the counter electrode undertakes three functions: (i) as a catalyst, (ii) as a positive electrode of primary cells, and (iii) as a mirror. To obey these functions, the electrode material should have high catalytic activity, high conductivity, high reflectivity, high surface area, and electrochemical and mechanical stability. To improve the performance of DSSCs, many scientists have developed new counter electrodes made of platinum, carbon materials, transition metals, conductive polymers, and composites. This book converses the various aspects of materials for the fabrication of counter electrodes especially for the DSSCs.