Relaxation in Optimization Theory and Variational Calculus

Relaxation in Optimization Theory and Variational Calculus

Author: Tomáš Roubiček

Publisher: Walter de Gruyter

Published: 1997

Total Pages: 496

ISBN-13: 9783110145427

DOWNLOAD EBOOK

Introduces applied mathematicians and graduate students to an original relaxation method based on a continuous extension of various optimization problems relating to convex compactification; it can be applied to problems in optimal control theory, the calculus of variations, and non-cooperative game theory. Reviews the background and summarizes the general theory of convex compactifications, then uses it to obtain convex, locally compact envelopes of the Lebesague and Sobolev spaces involved in concrete problems. The nontrivial envelopes cover the classical Young measures as well as various generalizations of them, which can record the limit behavior of fast oscillation and concentration effects. Annotation copyrighted by Book News, Inc., Portland, OR


Methods of Fourier Analysis and Approximation Theory

Methods of Fourier Analysis and Approximation Theory

Author: Michael Ruzhansky

Publisher: Birkhäuser

Published: 2016-03-11

Total Pages: 255

ISBN-13: 331927466X

DOWNLOAD EBOOK

Different facets of interplay between harmonic analysis and approximation theory are covered in this volume. The topics included are Fourier analysis, function spaces, optimization theory, partial differential equations, and their links to modern developments in the approximation theory. The articles of this collection were originated from two events. The first event took place during the 9th ISAAC Congress in Krakow, Poland, 5th-9th August 2013, at the section “Approximation Theory and Fourier Analysis”. The second event was the conference on Fourier Analysis and Approximation Theory in the Centre de Recerca Matemàtica (CRM), Barcelona, during 4th-8th November 2013, organized by the editors of this volume. All articles selected to be part of this collection were carefully reviewed.


Optimal Control of Nonlinear Parabolic Systems

Optimal Control of Nonlinear Parabolic Systems

Author: Pekka Neittaanmaki

Publisher: CRC Press

Published: 1994-02-08

Total Pages: 432

ISBN-13: 9780824790813

DOWNLOAD EBOOK

This book discusses theoretical approaches to the study of optimal control problems governed by non-linear evolutions - including semi-linear equations, variational inequalities and systems with phase transitions. It also provides algorithms for solving non-linear parabolic systems and multiphase Stefan-like systems.


Relaxation in Optimization Theory and Variational Calculus

Relaxation in Optimization Theory and Variational Calculus

Author: Tomáš Roubíček

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2020-11-09

Total Pages: 602

ISBN-13: 3110590859

DOWNLOAD EBOOK

The relaxation method has enjoyed an intensive development during many decades and this new edition of this comprehensive text reflects in particular the main achievements in the past 20 years. Moreover, many further improvements and extensions are included, both in the direction of optimal control and optimal design as well as in numerics and applications in materials science, along with an updated treatment of the abstract parts of the theory.


Handbook of Multivalued Analysis

Handbook of Multivalued Analysis

Author: Shouchuan Hu

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 941

ISBN-13: 1461546656

DOWNLOAD EBOOK

In volume I we developed the tools of "Multivalued Analysis. " In this volume we examine the applications. After all, the initial impetus for the development of the theory of set-valued functions came from its applications in areas such as control theory and mathematical economics. In fact, the needs of control theory, in particular the study of systems with a priori feedback, led to the systematic investigation of differential equations with a multi valued vector field (differential inclusions). For this reason, we start this volume with three chapters devoted to set-valued differential equations. However, in contrast to the existing books on the subject (i. e. J. -P. Aubin - A. Cellina: "Differential Inclusions," Springer-Verlag, 1983, and Deimling: "Multivalued Differential Equations," W. De Gruyter, 1992), here we focus on "Evolution Inclusions," which are evolution equations with multi valued terms. Evolution equations were raised to prominence with the development of the linear semigroup theory by Hille and Yosida initially, with subsequent im portant contributions by Kato, Phillips and Lions. This theory allowed a successful unified treatment of some apparently different classes of nonstationary linear par tial differential equations and linear functional equations. The needs of dealing with applied problems and the natural tendency to extend the linear theory to the nonlinear case led to the development of the nonlinear semigroup theory, which became a very effective tool in the analysis of broad classes of nonlinear evolution equations.


Optimization of Elliptic Systems

Optimization of Elliptic Systems

Author: Pekka Neittaanmaki

Publisher: Springer Science & Business Media

Published: 2007-01-04

Total Pages: 514

ISBN-13: 0387272364

DOWNLOAD EBOOK

The present monograph is intended to provide a comprehensive and accessible introduction to the optimization of elliptic systems. This area of mathematical research, which has many important applications in science and technology. has experienced an impressive development during the past two decades. There are already many good textbooks dealing with various aspects of optimal design problems. In this regard, we refer to the works of Pironneau [1984], Haslinger and Neittaanmaki [1988], [1996], Sokolowski and Zolksio [1992], Litvinov [2000], Allaire [2001], Mohammadi and Pironneau [2001], Delfour and Zolksio [2001], and Makinen and Haslinger [2003]. Already Lions [I9681 devoted a major part of his classical monograph on the optimal control of partial differential equations to the optimization of elliptic systems. Let us also mention that even the very first known problem of the calculus of variations, the brachistochrone studied by Bernoulli back in 1696. is in fact a shape optimization problem. The natural richness of this mathematical research subject, as well as the extremely large field of possible applications, has created the unusual situation that although many important results and methods have already been est- lished, there are still pressing unsolved questions. In this monograph, we aim to address some of these open problems; as a consequence, there is only a minor overlap with the textbooks already existing in the field.


Variational Methods

Variational Methods

Author: Maïtine Bergounioux

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2017-01-11

Total Pages: 540

ISBN-13: 3110430398

DOWNLOAD EBOOK

With a focus on the interplay between mathematics and applications of imaging, the first part covers topics from optimization, inverse problems and shape spaces to computer vision and computational anatomy. The second part is geared towards geometric control and related topics, including Riemannian geometry, celestial mechanics and quantum control. Contents: Part I Second-order decomposition model for image processing: numerical experimentation Optimizing spatial and tonal data for PDE-based inpainting Image registration using phase・amplitude separation Rotation invariance in exemplar-based image inpainting Convective regularization for optical flow A variational method for quantitative photoacoustic tomography with piecewise constant coefficients On optical flow models for variational motion estimation Bilevel approaches for learning of variational imaging models Part II Non-degenerate forms of the generalized Euler・Lagrange condition for state-constrained optimal control problems The Purcell three-link swimmer: some geometric and numerical aspects related to periodic optimal controls Controllability of Keplerian motion with low-thrust control systems Higher variational equation techniques for the integrability of homogeneous potentials Introduction to KAM theory with a view to celestial mechanics Invariants of contact sub-pseudo-Riemannian structures and Einstein・Weyl geometry Time-optimal control for a perturbed Brockett integrator Twist maps and Arnold diffusion for diffeomorphisms A Hamiltonian approach to sufficiency in optimal control with minimal regularity conditions: Part I Index


Well-Posed Nonlinear Problems

Well-Posed Nonlinear Problems

Author: Mircea Sofonea

Publisher: Springer Nature

Published: 2023-11-28

Total Pages: 410

ISBN-13: 3031414160

DOWNLOAD EBOOK

This monograph presents an original method to unify the mathematical theories of well-posed problems and contact mechanics. The author uses a new concept called the Tykhonov triple to develop a well-posedness theory in which every convergence result can be interpreted as a well-posedness result. This will be useful for studying a wide class of nonlinear problems, including fixed-point problems, inequality problems, and optimal control problems. Another unique feature of the manuscript is the unitary treatment of mathematical models of contact, for which new variational formulations and convergence results are presented. Well-Posed Nonlinear Problems will be a valuable resource for PhD students and researchers studying contact problems. It will also be accessible to interested researchers in related fields, such as physics, mechanics, engineering, and operations research.