Questions that arose from linear programming and combinatorial optimization have been a driving force for modern polytope theory, such as the diameter questions motivated by the desire to understand the complexity of the simplex algorithm, or the need to study facets for use in cutting plane procedures. In addition, algorithms now provide the means to computationally study polytopes, to compute their parameters such as flag vectors, graphs and volumes, and to construct examples of large complexity. The papers of this volume thus display a wide panorama of connections of polytope theory with other fields. Areas such as discrete and computational geometry, linear and combinatorial optimization, and scientific computing have contributed a combination of questions, ideas, results, algorithms and, finally, computer programs.
Questions that arose from linear programming and combinatorial optimization have been a driving force for modern polytope theory, such as the diameter questions motivated by the desire to understand the complexity of the simplex algorithm, or the need to study facets for use in cutting plane procedures. In addition, algorithms now provide the means to computationally study polytopes, to compute their parameters such as flag vectors, graphs and volumes, and to construct examples of large complexity. The papers of this volume thus display a wide panorama of connections of polytope theory with other fields. Areas such as discrete and computational geometry, linear and combinatorial optimization, and scientific computing have contributed a combination of questions, ideas, results, algorithms and, finally, computer programs.
Many polytopes of practical interest have enormous output complexity and are often highly degenerate, posing severe difficulties for known general-purpose algorithms. They are, however, highly structured, and attention has turned to exploiting this structure, particularly symmetry. Initial applications of this approach have permitted computations previously far out of reach, but much remains to be understood and validated experimentally. The papers in this volume give a good snapshot of the ideas discussed at a Workshop on Polyhedral Computation held at the CRM in Montréal in October 2006 and,
Algorithms and Theory of Computation Handbook, Second Edition in a two volume set, provides an up-to-date compendium of fundamental computer science topics and techniques. It also illustrates how the topics and techniques come together to deliver efficient solutions to important practical problems. New to the Second Edition: Along with updating and revising many of the existing chapters, this second edition contains more than 20 new chapters. This edition now covers external memory, parameterized, self-stabilizing, and pricing algorithms as well as the theories of algorithmic coding, privacy and anonymity, databases, computational games, and communication networks. It also discusses computational topology, computational number theory, natural language processing, and grid computing and explores applications in intensity-modulated radiation therapy, voting, DNA research, systems biology, and financial derivatives. This best-selling handbook continues to help computer professionals and engineers find significant information on various algorithmic topics. The expert contributors clearly define the terminology, present basic results and techniques, and offer a number of current references to the in-depth literature. They also provide a glimpse of the major research issues concerning the relevant topics
Polyhedral and Algebraic Methods in Computational Geometry provides a thorough introduction into algorithmic geometry and its applications. It presents its primary topics from the viewpoints of discrete, convex and elementary algebraic geometry. The first part of the book studies classical problems and techniques that refer to polyhedral structures. The authors include a study on algorithms for computing convex hulls as well as the construction of Voronoi diagrams and Delone triangulations. The second part of the book develops the primary concepts of (non-linear) computational algebraic geometry. Here, the book looks at Gröbner bases and solving systems of polynomial equations. The theory is illustrated by applications in computer graphics, curve reconstruction and robotics. Throughout the book, interconnections between computational geometry and other disciplines (such as algebraic geometry, optimization and numerical mathematics) are established. Polyhedral and Algebraic Methods in Computational Geometry is directed towards advanced undergraduates in mathematics and computer science, as well as towards engineering students who are interested in the applications of computational geometry.
The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.
This richly illustrated textbook explores the amazing interaction between combinatorics, geometry, number theory, and analysis which arises in the interplay between polyhedra and lattices. Highly accessible to advanced undergraduates, as well as beginning graduate students, this second edition is perfect for a capstone course, and adds two new chapters, many new exercises, and updated open problems. For scientists, this text can be utilized as a self-contained tooling device. The topics include a friendly invitation to Ehrhart’s theory of counting lattice points in polytopes, finite Fourier analysis, the Frobenius coin-exchange problem, Dedekind sums, solid angles, Euler–Maclaurin summation for polytopes, computational geometry, magic squares, zonotopes, and more. With more than 300 exercises and open research problems, the reader is an active participant, carried through diverse but tightly woven mathematical fields that are inspired by an innocently elementary question: What are the relationships between the continuous volume of a polytope and its discrete volume? Reviews of the first edition: “You owe it to yourself to pick up a copy of Computing the Continuous Discretely to read about a number of interesting problems in geometry, number theory, and combinatorics.” — MAA Reviews “The book is written as an accessible and engaging textbook, with many examples, historical notes, pithy quotes, commentary integrating the mate rial, exercises, open problems and an extensive bibliography.” — Zentralblatt MATH “This beautiful book presents, at a level suitable for advanced undergraduates, a fairly complete introduction to the problem of counting lattice points inside a convex polyhedron.” — Mathematical Reviews “Many departments recognize the need for capstone courses in which graduating students can see the tools they have acquired come together in some satisfying way. Beck and Robins have written the perfect text for such a course.” — CHOICE
"The original edition [...] inspired a whole generation of grateful workers in polytope theory. Without it, it is doubtful whether many of the subsequent advances in the subject would have been made. The many seeds it sowed have since grown into healthy trees, with vigorous branches and luxuriant foliage. It is good to see it in print once again." --Peter McMullen, University College London
This two volume set of the Computing Handbook, Third Edition (previously theComputer Science Handbook) provides up-to-date information on a wide range of topics in computer science, information systems (IS), information technology (IT), and software engineering. The third edition of this popular handbook addresses not only the dramatic growth of computing as a discipline but also the relatively new delineation of computing as a family of separate disciplines as described by the Association for Computing Machinery (ACM), the IEEE Computer Society (IEEE-CS), and the Association for Information Systems (AIS). Both volumes in the set describe what occurs in research laboratories, educational institutions, and public and private organizations to advance the effective development and use of computers and computing in today's world. Research-level survey articles provide deep insights into the computing discipline, enabling readers to understand the principles and practices that drive computing education, research, and development in the twenty-first century. Chapters are organized with minimal interdependence so that they can be read in any order and each volume contains a table of contents and subject index, offering easy access to specific topics. The first volume of this popular handbook mirrors the modern taxonomy of computer science and software engineering as described by the Association for Computing Machinery (ACM) and the IEEE Computer Society (IEEE-CS). Written by established leading experts and influential young researchers, it examines the elements involved in designing and implementing software, new areas in which computers are being used, and ways to solve computing problems. The book also explores our current understanding of software engineering and its effect on the practice of software development and the education of software professionals. The second volume of this popular handbook demonstrates the richness and breadth of the IS and IT disciplines. The book explores their close links to the practice of using, managing, and developing IT-based solutions to advance the goals of modern organizational environments. Established leading experts and influential young researchers present introductions to the current status and future directions of research and give in-depth perspectives on the contributions of academic research to the practice of IS and IT development, use, and management.
The first volume of this popular handbook mirrors the modern taxonomy of computer science and software engineering as described by the Association for Computing Machinery (ACM) and the IEEE Computer Society (IEEE-CS). Written by established leading experts and influential young researchers, it examines the elements involved in designing and implementing software, new areas in which computers are being used, and ways to solve computing problems. The book also explores our current understanding of software engineering and its effect on the practice of software development and the education of software professionals.