Polytopes and Symmetry

Polytopes and Symmetry

Author: Stewart A. Robertson

Publisher: Cambridge University Press

Published: 1984-01-26

Total Pages: 138

ISBN-13: 9780521277396

DOWNLOAD EBOOK

This book describes a fresh approach to the classification of of convex plane polygons and of convex polyhedra according to their symmetry properties, based on ideas of topology and transformation group theory. Although there is considerable agreement with traditional treatments, a number of new concepts emerge that present classical ideas in a quite new way.


The Geometry of Higher-Dimensional Polytopes

The Geometry of Higher-Dimensional Polytopes

Author: Zhizhin, Gennadiy Vladimirovich

Publisher: IGI Global

Published: 2018-08-03

Total Pages: 301

ISBN-13: 1522569693

DOWNLOAD EBOOK

The majority of the chemical elements form chemical compounds with molecules of higher dimension (i.e., substantially exceeding three). This fact is very important for the analysis of molecular interactions in various areas: nanomedicine, nanotoxicology, and quantum biology. The Geometry of Higher-Dimensional Polytopes contains innovative research on the methods and applications of the structures of binary compounds. It explores the study of geometry polytopes from a higher-dimensional perspective, taking into account the features of polytopes that are models of chemical compounds. While highlighting topics including chemical compounds, symmetry transformation, and DNA structures, this book is ideally designed for researchers, academicians, and students seeking current research on dimensions present in binary compounds.


Convex Polytopes

Convex Polytopes

Author: Branko Grünbaum

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 561

ISBN-13: 1461300193

DOWNLOAD EBOOK

"The original edition [...] inspired a whole generation of grateful workers in polytope theory. Without it, it is doubtful whether many of the subsequent advances in the subject would have been made. The many seeds it sowed have since grown into healthy trees, with vigorous branches and luxuriant foliage. It is good to see it in print once again." --Peter McMullen, University College London


Regular Polytopes

Regular Polytopes

Author: H. S. M. Coxeter

Publisher: Courier Corporation

Published: 2012-05-23

Total Pages: 372

ISBN-13: 0486141586

DOWNLOAD EBOOK

Foremost book available on polytopes, incorporating ancient Greek and most modern work. Discusses polygons, polyhedrons, and multi-dimensional polytopes. Definitions of symbols. Includes 8 tables plus many diagrams and examples. 1963 edition.


Lectures on Polytopes

Lectures on Polytopes

Author: Günter M. Ziegler

Publisher: Springer

Published: 2012-05-03

Total Pages: 388

ISBN-13: 9780387943657

DOWNLOAD EBOOK

Based on a graduate course at the Technische Universität, Berlin, these lectures present a wealth of material on the modern theory of convex polytopes. The straightforward exposition features many illustrations, and complete proofs for most theorems. With only linear algebra as a prerequisite, it takes the reader quickly from the basics to topics of recent research. The lectures introduce basic facts about polytopes, with an emphasis on methods that yield the results, discuss important examples and elegant constructions, and show the excitement of current work in the field. They will provide interesting and enjoyable reading for researchers as well as students.


Geometric Regular Polytopes

Geometric Regular Polytopes

Author: Peter McMullen

Publisher: Cambridge University Press

Published: 2020-02-20

Total Pages: 617

ISBN-13: 1108788319

DOWNLOAD EBOOK

Regular polytopes and their symmetry have a long history stretching back two and a half millennia, to the classical regular polygons and polyhedra. Much of modern research focuses on abstract regular polytopes, but significant recent developments have been made on the geometric side, including the exploration of new topics such as realizations and rigidity, which offer a different way of understanding the geometric and combinatorial symmetry of polytopes. This is the first comprehensive account of the modern geometric theory, and includes a wide range of applications, along with new techniques. While the author explores the subject in depth, his elementary approach to traditional areas such as finite reflexion groups makes this book suitable for beginning graduate students as well as more experienced researchers.


Abstract Regular Polytopes

Abstract Regular Polytopes

Author: Peter McMullen

Publisher: Cambridge University Press

Published: 2002-12-12

Total Pages: 580

ISBN-13: 9780521814966

DOWNLOAD EBOOK

Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. They are highly symmetric combinatorial structures with distinctive geometric, algebraic or topological properties; in many ways more fascinating than traditional regular polytopes and tessellations. The rapid development of the subject in the past 20 years has resulted in a rich new theory, featuring an attractive interplay of mathematical areas, including geometry, combinatorics, group theory and topology. Abstract regular polytopes and their groups provide an appealing new approach to understanding geometric and combinatorial symmetry. This is the first comprehensive up-to-date account of the subject and its ramifications, and meets a critical need for such a text, because no book has been published in this area of classical and modern discrete geometry since Coxeter's Regular Polytopes (1948) and Regular Complex Polytopes (1974). The book should be of interest to researchers and graduate students in discrete geometry, combinatorics and group theory.


Symmetries in Graphs, Maps, and Polytopes

Symmetries in Graphs, Maps, and Polytopes

Author: Jozef Širáň

Publisher: Springer

Published: 2016-03-26

Total Pages: 330

ISBN-13: 3319304518

DOWNLOAD EBOOK

This volume contains seventeen of the best papers delivered at the SIGMAP Workshop 2014, representing the most recent advances in the field of symmetries of discrete objects and structures, with a particular emphasis on connections between maps, Riemann surfaces and dessins d’enfant.Providing the global community of researchers in the field with the opportunity to gather, converse and present their newest findings and advances, the Symmetries In Graphs, Maps, and Polytopes Workshop 2014 was the fifth in a series of workshops. The initial workshop, organized by Steve Wilson in Flagstaff, Arizona, in 1998, was followed in 2002 and 2006 by two meetings held in Aveiro, Portugal, organized by Antonio Breda d’Azevedo, and a fourth workshop held in Oaxaca, Mexico, organized by Isabel Hubard in 2010.This book should appeal to both specialists and those seeking a broad overview of what is happening in the area of symmetries of discrete objects and structures.iv>


Realization Spaces of Polytopes

Realization Spaces of Polytopes

Author: Jürgen Richter-Gebert

Publisher: Springer

Published: 2006-11-13

Total Pages: 195

ISBN-13: 3540496408

DOWNLOAD EBOOK

The book collects results about realization spaces of polytopes. It gives a presentation of the author's "Universality Theorem for 4-polytopes". It is a comprehensive survey of the important results that have been obtained in that direction. The approaches chosen are direct and very geometric in nature. The book is addressed to researchers and to graduate students. The former will find a comprehensive source for the above mentioned results. The latter will find a readable introduction to the field. The reader is assumed to be familiar with basic concepts of linear algebra.


Tropical Geometry and Mirror Symmetry

Tropical Geometry and Mirror Symmetry

Author: Mark Gross

Publisher: American Mathematical Soc.

Published: 2011-01-20

Total Pages: 338

ISBN-13: 0821852329

DOWNLOAD EBOOK

Tropical geometry provides an explanation for the remarkable power of mirror symmetry to connect complex and symplectic geometry. The main theme of this book is the interplay between tropical geometry and mirror symmetry, culminating in a description of the recent work of Gross and Siebert using log geometry to understand how the tropical world relates the A- and B-models in mirror symmetry. The text starts with a detailed introduction to the notions of tropical curves and manifolds, and then gives a thorough description of both sides of mirror symmetry for projective space, bringing together material which so far can only be found scattered throughout the literature. Next follows an introduction to the log geometry of Fontaine-Illusie and Kato, as needed for Nishinou and Siebert's proof of Mikhalkin's tropical curve counting formulas. This latter proof is given in the fourth chapter. The fifth chapter considers the mirror, B-model side, giving recent results of the author showing how tropical geometry can be used to evaluate the oscillatory integrals appearing. The final chapter surveys reconstruction results of the author and Siebert for ``integral tropical manifolds.'' A complete version of the argument is given in two dimensions.