"Chemists from several international polyoxometalate research groups discussed recent results, including: controlled self-organization processes for the preparation of nano-composites; electronic interactions in magnetic mixed-valence cryptands and coronands; synthesis of the novel polyoxometalates with topological or biological significance; systematic investigations in acid-base and/or redox catalysis for organic transformations; and electronic properties in materials science."--Page v
The book highlights recent prominent results in the domain of the synthesis of new polyoxometalates with a specific attention to polyoxothioanions, and provides some novelties and perspectives in selected domains such as magnetism, luminescence and nanochemistry, and macroions self-assembly in solutions. The case of OC one-potOCO syntheses often used and reported in POMs synthesis is studied in terms of more complex solution speciation processes related to highly dynamical situation connected to factors such as pH, ionic strength, reaction time, temperature, counterion nature, concentration of starting materials, presence of electron donors and redox potentials. The behavior of macroions (2nm-6nm size range) in solution is shown to be quite different from the simple ionic solution or colloidal systems (DebyeOCoHuckel model). Their self-assembling into a single-layered, spherical, hollow vesicle structure, namely the OC blackberryOCO structure, is clearly described. Examples of spin clusters with tunable interactions are given and single molecule magnets based on POMs are specifically tackled. Besides paramagnetic transition metal centres and lanthanoid ions encapsulated in archetypal lacunary polyoxoanions, magnetically functionalized Kleperates are described, their discovery tracing back nearly 15 years.
Polyoxometalates are anionic metal-oxo nanoclusters, which constitute a unique class of compounds owing to their rich solution equilibria and their unique compositional, electronic, reactive, and structural diversity. This book reviews metal-oxide cluster chemistry by covering topics ranging from fundamental aspects (i.e., structure, properties, self-assembly processes, derivatization) to functional materials that incorporate these molecular units, as well as their applications in the fields of current socioeconomic interest, such as energy storage systems, catalysis, molecular electronics, and biomedicine. Edited by prominent researchers in the field of polymer and polyoxometalate chemistries, the book compiles contributions from some of the most distinguished and promising scientists worldwide in such a way that it will appeal to a general readership involved in research areas related to chemistry and materials science.
This book gives an overview of recent integrated and inter-disciplinary approaches between chemical experiment and theory in a variety of fields, from polymer science to materials chemistry and ranging from the design of tailored properties to catalysis and reactivity, building on the well-established success of Density Functional Theory as the foremost quantum chemical method to provide qualitative and quantitative interpretation of results from the chemical laboratory. The combination of several characterization techniques with an understanding at the molecular level of chemical and physical phenomena are the main focal point of the subject matter.
Comprehensive Coordination Chemistry II (CCC II) is the sequel to what has become a classic in the field, Comprehensive Coordination Chemistry, published in 1987. CCC II builds on the first and surveys new developments authoritatively in over 200 newly comissioned chapters, with an emphasis on current trends in biology, materials science and other areas of contemporary scientific interest.
The book explains the principles and fundamentals of photocatalysis and highlights the current developments and future potential of the green-chemistry-oriented applications of various inorganic, organic, and hybrid photocatalysts. The book consists of eleven chapters, including the principles and fundamentals of heterogeneous photocatalysis; the mechanisms and dynamics of surface photocatalysis; research on TiO2-based composites with unique nanostructures; the latest developments and advances in exploiting photocatalyst alternatives to TiO2; and photocatalytic materials for applications other than the traditional degradation of pollutants, such as carbon dioxide reduction, water oxidation, a complete spectrum of selective organic transformations and water splitting by photocatalytic reduction. In addition, heterogeneized polyoxometalate materials for photocatalytic purposes and the proper design of photocatalytic reactors and modeling of light are also discussed. This book appeals to a wide readership of the academic and industrial researchers and it can also be used in the classroom for undergraduate and graduate students focusing on heterogeneous photocatalysis, sustainable chemistry, energy conversion and storage, nanotechnology, chemical engineering, environmental protection, optoelectronics, sensors, and surface and interface science. Juan Carlos Colmenares is a Professor at the Institute of Physical Chemistry, Polish Academy of Sciences, Poland. Yi-Jun Xu is a Professor at the State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, China.
In recent years, inorganic polymers have attracted much attention in nano-biomedicine, in particular in the area of regenerative medicine and drug delivery. This growing interest in inorganic polymers has been further accelerated by the development of new synthetic and analytical methods in the field of nanotechnology and nanochemistry. Examples for biomedical inorganic polymers that had been proven to exhibit biomedical effects and/or have been applied in preclinical or clinical trials are polysilicate / silica glass (such as naturally formed “biosilica” and synthetic “bioglass”) and inorganic polyphosphate. Some members of the mentioned biomedical inorganic polymers have already been applied e.g. as “bioglass” for bone repair and bone tissue engineering, or they are used in food processing and in dental care (inorganic polyphosphates). However, there are a number of further biological and medicinal properties of these polymers, which have been elucidated in the last few years but not yet been applied for treatment of humans. In addition to polysilicates and polyphosphate, there are a series of other inorganic polymers including polyarsenate and polyvanadate, whose biological / biomedical properties have been only marginally studied so far. Moreover, the combined application of inorganic polymers and organic polymeric molecules (formation of organic-inorganic hybrid materials) provides a variety of new materials with novel property combinations and diverse applications in nanomedicine. The planned book summarizes the present state of knowledge on a large group of inorganic polymers that had hitherto been mainly considered with regard to their chemistry but not comprehensively reviewed with respect to their potential biomedical applications.