Polynomial Representations of GL_n

Polynomial Representations of GL_n

Author: James A. Green

Publisher: Springer Science & Business Media

Published: 2006-11-30

Total Pages: 167

ISBN-13: 3540469443

DOWNLOAD EBOOK

The new corrected and expanded edition adds a special appendix on Schensted Correspondence and Littelmann Paths. This appendix can be read independently of the rest of the volume and is an account of the Littelmann path model for the case gln. The appendix also offers complete proofs of classical theorems of Schensted and Knuth.


Polynomial Representations of GLn

Polynomial Representations of GLn

Author: James Alexander Green

Publisher:

Published: 1980

Total Pages: 132

ISBN-13:

DOWNLOAD EBOOK

The first half of this book contains the text of the first edition of LNM volume 830, Polynomial Representations of GLn. This classic account of matrix representations, the Schur algebra, the modular representations of GLn, and connections with symmetric groups, has been the basis of much research in representation theory. The second half is an Appendix, and can be read independently of the first. It is an account of the Littelmann path model for the case gln. In this case, Littelmann's 'paths' become 'words', and so the Appendix works with the combinatorics on words. This leads to the repesentation theory of the 'Littelmann algebra', which is a close analogue of the Schur algebra. The treatment is self- contained; in particular complete proofs are given of classical theorems of Schensted and Knuth.


Polynomial Representations of GL_n

Polynomial Representations of GL_n

Author: James A. Green

Publisher: Springer

Published: 2008-07-15

Total Pages: 124

ISBN-13: 3540383794

DOWNLOAD EBOOK

The new corrected and expanded edition adds a special appendix on Schensted Correspondence and Littelmann Paths. This appendix can be read independently of the rest of the volume and is an account of the Littelmann path model for the case gln. The appendix also offers complete proofs of classical theorems of Schensted and Knuth.


Introduction to Representation Theory

Introduction to Representation Theory

Author: Pavel I. Etingof

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 240

ISBN-13: 0821853511

DOWNLOAD EBOOK

Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.


Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry

Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry

Author: Vlastimil Dlab

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 502

ISBN-13: 0821834169

DOWNLOAD EBOOK

These proceedings are from the Tenth International Conference on Representations of Algebras and Related Topics (ICRA X) held at The Fields Institute. In addition to the traditional ``instructional'' workshop preceding the conference, there were also workshops on ``Commutative Algebra, Algebraic Geometry and Representation Theory'', ``Finite Dimensional Algebras, Algebraic Groups and Lie Theory'', and ``Quantum Groups and Hall Algebras''. These workshops reflect the latest developments and the increasing interest in areas that are closely related to the representation theory of finite dimensional associative algebras. Although these workshops were organized separately, their topics are strongly interrelated. The workshop on Commutative Algebra, Algebraic Geometry and Representation Theory surveyed various recently established connections, such as those pertaining to the classification of vector bundles or Cohen-Macaulay modules over Noetherian rings, coherent sheaves on curves, or ideals in Weyl algebras. In addition, methods from algebraic geometry or commutative algebra relating to quiver representations and varieties of modules were presented. The workshop on Finite Dimensional Algebras, Algebraic Groups and Lie Theory surveyed developments in finite dimensional algebras and infinite dimensional Lie theory, especially as the two areas interact and may have future interactions. The workshop on Quantum Groups and Hall Algebras dealt with the different approaches of using the representation theory of quivers (and species) in order to construct quantum groups, working either over finite fields or over the complex numbers. In particular, these proceedings contain a quite detailed outline of the use of perverse sheaves in order to obtain canonical bases. The book is recommended for graduate students and researchers in algebra and geometry.


Algebras and Representation Theory

Algebras and Representation Theory

Author: Karin Erdmann

Publisher: Springer

Published: 2018-09-07

Total Pages: 304

ISBN-13: 3319919989

DOWNLOAD EBOOK

This carefully written textbook provides an accessible introduction to the representation theory of algebras, including representations of quivers. The book starts with basic topics on algebras and modules, covering fundamental results such as the Jordan-Hölder theorem on composition series, the Artin-Wedderburn theorem on the structure of semisimple algebras and the Krull-Schmidt theorem on indecomposable modules. The authors then go on to study representations of quivers in detail, leading to a complete proof of Gabriel's celebrated theorem characterizing the representation type of quivers in terms of Dynkin diagrams. Requiring only introductory courses on linear algebra and groups, rings and fields, this textbook is aimed at undergraduate students. With numerous examples illustrating abstract concepts, and including more than 200 exercises (with solutions to about a third of them), the book provides an example-driven introduction suitable for self-study and use alongside lecture courses.


Representations of Algebraic Groups

Representations of Algebraic Groups

Author: Jens Carsten Jantzen

Publisher: American Mathematical Soc.

Published: 2003

Total Pages: 594

ISBN-13: 082184377X

DOWNLOAD EBOOK

Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.


Representation Theory of Finite Groups

Representation Theory of Finite Groups

Author: Benjamin Steinberg

Publisher: Springer Science & Business Media

Published: 2011-10-23

Total Pages: 166

ISBN-13: 1461407761

DOWNLOAD EBOOK

This book is intended to present group representation theory at a level accessible to mature undergraduate students and beginning graduate students. This is achieved by mainly keeping the required background to the level of undergraduate linear algebra, group theory and very basic ring theory. Module theory and Wedderburn theory, as well as tensor products, are deliberately avoided. Instead, we take an approach based on discrete Fourier Analysis. Applications to the spectral theory of graphs are given to help the student appreciate the usefulness of the subject. A number of exercises are included. This book is intended for a 3rd/4th undergraduate course or an introductory graduate course on group representation theory. However, it can also be used as a reference for workers in all areas of mathematics and statistics.


The Admissible Dual of GL(N) Via Compact Open Subgroups

The Admissible Dual of GL(N) Via Compact Open Subgroups

Author: Colin John Bushnell

Publisher: Princeton University Press

Published: 1993

Total Pages: 330

ISBN-13: 9780691021140

DOWNLOAD EBOOK

This work gives a full description of a method for analyzing the admissible complex representations of the general linear group G = Gl(N, F) of a non-Archimedean local field F in terms of the structure of these representations when they are restricted to certain compact open subgroups of G. The authors define a family of representations of these compact open subgroups, which they call simple types. The first example of a simple type, the "trivial type," is the trivial character of an Iwahori subgroup of G. The irreducible representations of G containing the trivial simple type are classified by the simple modules over a classical affine Hecke algebra. Via an isomorphism of Hecke algebras, this classification is transferred to the irreducible representations of G containing a given simple type. This leads to a complete classification of the irreduc-ible smooth representations of G, including an explicit description of the supercuspidal representations as induced representations. A special feature of this work is its virtually complete reliance on algebraic methods of a ring-theoretic kind. A full and accessible account of these methods is given here.