This book contains a series of tutorial essays on polarization mode dispersion (PMD) by the leading experts in the field. It starts with an introductory review of the basic concepts and continues with more advanced topics, including a thorough review of PMD mitigation techniques. Topics covered include mathematical representation of PMD, how to properly model PMD in numerical simulations, how to accurately measure PMD and other related polarization effects, and how to infer fiber properties from polarization measurements. It includes discussions of other polarization effects such as polarization-dependent loss and the interaction of PMD with fiber nonlinearity. It additionally covers systems issues like the impact of PMD on wavelength division multiplexed systems. This book is intended for research scientists or engineers who wish to become familiar with PMD and its system impacts.
Since the 3rd edition appeared, a fast evolution of the field has occurred. The fourth edition of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers. The contents include such important topics as self- and cross-phase modulation, stimulated Raman and Brillouin scattering, four-wave mixing, modulation instability, and optical solitons. Many new figures have been added to help illustrate the concepts discussed in the book. New to this edition are chapters on highly nonlinear fibers and and the novel nonlinear effects that have been observed in these fibers since 2000. Such a chapter should be of interest to people in the field of new wavelengths generation, which has potential application in medical diagnosis and treatments, spectroscopy, new wavelength lasers and light sources, etc. Continues to be industry bestseller providing unique source of comprehensive coverage on the subject of nonlinear fiber optics Fourth Edition is a completely up-to-date treatment of the nonlinear phenomena occurring inside optical fibers Includes 2 NEW CHAPTERS on the properties of highly nonlinear fibers and their novel nonlinear effects
Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate optical atmospheres. - Exceptional new chapter on Arrayed-Waveguide Grating (AWG) - In-depth discussion of Photonic Crystal Fibers (PCFs) - Thorough explanation of Multimode Interference Devices (MMI) - Full coverage of polarization Mode Dispersion (PMD)
A comprehensive reference to noise and signal interference in optical fiber communications Noise and Signal Interference in Optical Fiber Transmission Systems is a compendium on specific topics within optical fiber transmission and the optimization process of the system design. It offers comprehensive treatment of noise and intersymbol interference (ISI) components affecting optical fiber communications systems, containing coverage on noise from the light source, the fiber and the receiver. The ISI is modeled with a statistical approach, leading to new useful computational methods. The author discusses the subject with the help of numerous applications and simulations of noise and signal interference theory. Key features: Complete all-in-one reference on the subject for engineers and designers of optical fiber transmission systems Discusses the physical principles behind several noise contributions encountered in the optical communications systems design, including contributions from the light source, the fiber and the receiver Covers the theory of the ISI for the binary signal, as well as noise statistics Discusses the theory and the mathematical models of the numerous noise components (such as optical noise, photodetection noise and reflection noise) Introduces the frequency description of the ISI and provides new calculation methods based on the characteristic functions Provides useful tools and examples for optimum design of optical fiber transmission networks and systems This book will serve as a comprehensive reference for researchers, R & D engineers, developers and designers working on optical transmission systems and optical communications. Advanced students in optical communications and related fields will also find this book useful.
Polarization Measurement and Control in Optical Fiber Communication and Sensor Systems A practical handbook covering polarization measurement and control in optical communication and sensor systems In Polarization Measurement and Control in Optical Fiber Communication and Sensor Systems, the authors deliver a comprehensive exploration of polarization related phenomena, as well as the methodologies, techniques, and devices used to eliminate, mitigate, or compensate for polarization related problems and impairments. The book also discusses polarization-related parameter measurement and characterization technologies in optical fibers and fiber optic devices and the utilization of polarization to solve problems or enable new capabilities in communications, sensing, and measurement systems. The authors provide a practical and hands-on treatment of the information that engineers, scientists, and graduate students must grasp to be successful in their everyday work. In addition to coverage of topics ranging from the use of polarization analysis to obtain instantaneous spectral information on light sources to the design of novel fiber optic gyroscopes for rotation sensing, Polarization Measurement and Control in Optical Fiber Communication and Sensor Systems offers: A thorough introduction to polarization in optical fiber studies, including a history of polarization in optical fiber communication and sensor systems Comprehensive discussions of the fundamentals of polarization, including the effects unique to optical fiber systems, as well as extensive coverage Jones and Mueller matrix calculus for polarization analysis In-depth treatments of active polarization controlling devices for optical fiber systems, including polarization controllers, scramblers, emulators, switches, and binary polarization state generators Fulsome explorations of passive polarization management devices, including polarizers, polarization beam splitters/displacers, wave-plates, Faraday rotators, and depolarizers Extensive review of polarization measurement techniques and devices, including time-division, amplitude-division, and wave-front division Stokes polarimeters, as well as various Mueller matrix polarimeters for PMD, PDL, and birefringence measurements Premiere of binary polarization state analyzers and binary Mueller matrix polarimeters pioneered by the authors, including their applications for highly sensitive PMD, PDL, and birefringence measurements Comprehensive discussion on distributed polarization analysis techniques developed by the authors, including their applications in solving real world problems Detailed descriptions of high accuracy polarimetric fiber optic electric current and magnetic field sensors Perfect for professional engineers, scientists, and graduate students studying fiber optics, Polarization Measurement and Control in Optical Fiber Communication and Sensor Systems enables one to quickly grasp extensive knowledge and latest development of polarization in optical fibers and will earn a place in the libraries of professors and teachers of photonics and related disciplines.
This book is both a coherent exposition and an in-depth mathematical analysis of polarized light in fiber optics. It also is an essential reference for scientists, optical and electrical engineers, optical physicists, and researchers working in the field of fiber optics and in related optical fields. Upper-level undergraduate, graduate, and continuing-education students will refer to it again and again.
This book is a compilation of works presenting recent developments and practical applications in optical fiber technology. It contains 13 chapters from various institutions that represent global research in various topics such as scattering, dispersion, polarization interference, fuse phenomena and optical manipulation, optical fiber laser and sensor applications, passive optical network (PON) and plastic optical fiber (POF) technology. It provides the reader with a broad overview and sampling of the innovative research on optical fiber technologies.
This book covers the basic concepts and methods involved in polarization of light, and features important methods of analysis such as Jones matrices, Stokes parameters, and Poincaré sphere. It provides the background needed to understand the workings of, and to design, various photonic devices, including Faraday rotators, inline fiber optic components such as polarizers, wave plates, and polarization controllers, and polarimetric sensors such as fiber optic current sensors. Birefringence and the phenomenon of polarization mode dispersion (PMD) in single-mode fibers are also covered. The discussion of concepts is succinct, and the presentation of methods includes concrete examples, making the book an ideal text for students and a useful resource for engineers.