Polarimetric Detection, Characterization and Remote Sensing

Polarimetric Detection, Characterization and Remote Sensing

Author: Michael I. Mishchenko

Publisher: Springer Science & Business Media

Published: 2011-05-29

Total Pages: 573

ISBN-13: 9400716354

DOWNLOAD EBOOK

As the need for accurate and non-invasive optical characterization and diagnostic techniques is rapidly increasing, it is imperative to find improved ways of extracting the additional information contained within the measured parameters of the scattered light. This is the first specialized monograph on photopolarimetry, a rapidly developing, multidisciplinary topic with numerous military, ecological remote-sensing, astrophysical, biomedical, and technological applications. The main objective is to describe and discuss techniques developed in various disciplines to acquire useful information from the polarization signal of scattered electromagnetic waves. It focuses on the state-of-the-art in polarimetric detection, characterization, and remote sensing, including military and environmental monitoring as well as terrestrial, atmospheric, and biomedical characterization. The book identifies polarimetric techniques that have been especially successful for various applications as well as the future needs of the various research communities. The monograph is intended to facilitate cross-pollination of ideas and thereby improve research efficiency and help advance the field of polarimetry into the future. The book is thoroughly interdisciplinary and contains only invited review chapters written by leading experts in the respective fields. It will be useful to science professionals, engineers, and graduate students working in a broad range of disciplines: optics, electromagnetics, atmospheric radiation and remote sensing, radar meteorology, oceanography, climate research, astrophysics, optical engineering and technology, particle characterization, and biomedical optics.


High-resolution Polarimetric Imaging Techniques for Space and Medical Applications

High-resolution Polarimetric Imaging Techniques for Space and Medical Applications

Author: Suman Shrestha

Publisher:

Published: 2013

Total Pages: 131

ISBN-13:

DOWNLOAD EBOOK

In the year 2012, there were approximately 226,160 cases of lung cancer and 160,340 deaths out of it as per the National Cancer Institute. There are mainly two types of lung cancer, small cell lung cancer and non-small cell lung cancer, of which 87% are diagnosed as non-small cell. A physical algorithm and a systematic study relating the morphological, chemical and metabolic properties of lung cancer to the physical and optical parameters of the polarimetric detection process are missing. Therefore, one of the purposes of the study is to explore the polarimetric phenomenology of near infrared light interaction with healthy and lung cancer monoline cells by using efficient polarimetric backscattering detection techniques. Preliminary results indicate that enhanced discrimination between healthy and different types of lung cancer cells can be achieved based on their backscattered intensities, Mueller matrix, diattenuation and depolarization properties. Also, various optical parameters like linear depolarization ratio and degree of linear polarization play an important role in discriminating healthy and different lung cancer cells. Specifically, the sizes of the nuclei of the cancer cells and the nucleus-to-cytoplasmic ratios appear to have potential impact on the detected polarimetric signatures leading to enhanced discrimination of lung cancer cells. The second work in this thesis has been done with the support of the Air Force Research Laboratory (AFRL). Polarimetric signals have always played an important role in the identification, discrimination and analysis of a material's optical properties. This work presents a novel remote sensing approach based on polarimetric fractal detection principles. Backscattered polarimetric signals contribution from different materials used in space applications have already been detected using a laboratory LADAR testbed and this thesis presents implememtation of the LADAR testbed and analysis techniques of these backscattered signals based on fractal analysis. Fractal dimension has been chosen as a measure for the discrimination purposes of these materials. The outcome of this thesis indicates that polarimetric fractal principles may enhance the capabilities of the LADAR for characterization and discrimination of different materials.


Polarimetry of Stars and Planetary Systems

Polarimetry of Stars and Planetary Systems

Author: Ludmilla Kolokolova

Publisher: Cambridge University Press

Published: 2015-05-14

Total Pages: 507

ISBN-13: 1316298949

DOWNLOAD EBOOK

Summarising the striking advances of the last two decades, this reliable introduction to modern astronomical polarimetry provides a comprehensive review of state-of-the-art techniques, models and research methods. Focusing on optical and near-infrared wavelengths, each detailed, up-to-date chapter addresses a different facet of recent innovations, including new instrumentation, techniques and theories; new methods based on laboratory studies, enabling the modelling of polarimetric characteristics for a wide variety of astronomical objects; emerging fields of polarimetric exploration, including proto-planetary and debris discs, icy satellites, transneptunian objects, exoplanets, and the search for extraterrestrial life; and unique results produced by space telescopes, and polarimeters aboard exploratory spacecraft. With contributions from an international team of accomplished researchers, this is an ideal resource for astronomers and researchers working in astrophysics, earth sciences, and remote sensing keen to learn more about this valuable diagnostic tool. The book is dedicated to the memory of renowned polarimetrist Tom Gehrels.


Polarimetric Remote Sensing System Analysis

Polarimetric Remote Sensing System Analysis

Author: Chabitha Devaraj

Publisher:

Published: 2010

Total Pages: 149

ISBN-13:

DOWNLOAD EBOOK

"In addition to spectral information acquired by traditional multi/hyperspectral systems, passive electro optical and infrared (EO/IR) polarimetric sensors also measure the polarization response of different materials in the scene. Such an imaging modality can be useful in improving surface characterization; however, the characteristics of polarimetric systems have not been completely explored by the remote sensing community. Therefore, the main objective of this research was to advance our knowledge in polarimetric remote sensing by investigating the impact of polarization phenomenology on material discriminability. The first part of this research focuses on system validation, where the major goal was to assess the fidelity of the polarimetric images simulated using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model. A theoretical framework, based on polarization vision models used for animal vision studies and industrial defect detection applications, was developed within which the major components of the polarimetric image chain were validated. In the second part of this research, a polarization physics based approach for improved material discriminability was proposed. This approach utilizes the angular variation in the polarization response to infer the physical characteristics of the observed surface by imaging the scene in three different view directions. The usefulness of the proposed approach in improving detection performance in the absence of a priori knowledge about the target geometry was demonstrated. Sensitivity analysis of the proposed system for different scene related parameters was performed to identify the imaging conditions under which the material discriminability is maximized. Furthermore, the detection performance of the proposed polarimetric system was compared to that of the hyperspectral system to identify scenarios where polarization information can be very useful in improving the target contrast."--Abstract.


Advanced Polarimetry and Polarimetric Imaging

Advanced Polarimetry and Polarimetric Imaging

Author: Xiaobo Li

Publisher:

Published: 2024-07-31

Total Pages: 0

ISBN-13: 9783725817320

DOWNLOAD EBOOK

As a fundamental property of the light wave, polarization information can be used to reveal the light and target's physical properties, such as the material, thickness, surface features, refractive index, etc. Thanks to the unique advantages of polarization information, polarimetry and polarimetric imager techniques have promising applications in several fields, including object detection, biomedical imaging, remote sensing, astronomical observation, the characterization of surfaces and thin films, optical communication, etc. The theories, instruments, and interpretation methods for polarimetry and polarimetric imaging are constantly developing; therefore, improving the performance of polarimetry and polarimetric imagers and exploring related applications are still necessary to address existing challenges and expand the potential of polarimetric imaging. "Advanced Polarimetry and Polarimetric Imaging" highlights new theories in and applications of advanced polarimeters and polarimetric imaging. Seventeen manuscripts were submitted to this reprint. This reprint on polarization technology illustrates the field's notable progress and potential. It features research articles that introduce innovative solutions and tackle key challenges in polarimetric image restoration, 3D reconstruction, high-speed Mueller ellipsometry, and P-lidar. These promising applications and novel approaches in polarimetry and imaging technology herald a promising future.


Electromagnetic Waves

Electromagnetic Waves

Author: Vitaliy Zhurbenko

Publisher: BoD – Books on Demand

Published: 2011-06-21

Total Pages: 526

ISBN-13: 9533073047

DOWNLOAD EBOOK

This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, and finally, the biological effects and medical applications of electromagnetic fields.


Harbour Protection Through Data Fusion Technologies

Harbour Protection Through Data Fusion Technologies

Author: Elisa Shahbazian

Publisher: Springer Science & Business Media

Published: 2008-12-03

Total Pages: 363

ISBN-13: 1402088833

DOWNLOAD EBOOK

An Advanced Research Workshop (ARW) “Data Fusion Technologies for Harbour Protection” was held in Tallinn, Estonia 27 June–1 July, 2005. This workshop was organized by request of the NATO Security Through Science Programme and the Defence Investment Division. An ARW is one of many types of funded group support mechanisms established by the NATO Science Committee to contribute to the critical assessment of existing knowledge on new important topics, to identify directions for future research, and to promote close working relationships between scientists from different countries and with different professional experiences. The NATO Science Committee was approved at a meeting of the Heads of Government of the Alliance in December 1957, subsequent to the 1956 recommendation of “Three Wise Men” – Foreign Ministers Lange (Norway), Martino (Italy) and Pearson (Canada) on Non-Military Cooperation in NATO. The NATO Science Committee established the NATO Science Programme in 1958 to encourage and support scientific collaboration between individual scientists and to foster scientific development in its member states. In 1999, following the end of the Cold War, the Science Programme was transformed so that support is now devoted to collaboration between Partner-country and NATO-country scientists or to contributing towards research support in Partner countries. Since 2004, the Science Programme was further modified to focus exclusively on NATO Priority Research Topics (i. e. Defence Against Terrorism or Countering Other Threats to Security) and also preferably on a Partner country priority area.


Satellite Precipitation Measurement

Satellite Precipitation Measurement

Author: Vincenzo Levizzani

Publisher: Springer Nature

Published: 2020-04-10

Total Pages: 502

ISBN-13: 3030245683

DOWNLOAD EBOOK

This book offers a complete overview of the measurement of precipitation from space, which has made considerable advancements during the last two decades. This is mainly due to the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM) mission, CloudSat and a carefully maintained constellation of satellites hosting passive microwave sensors. The book revisits a previous book, Measuring Precipitation from Space, edited by V. Levizzani, P. Bauer and F. J. Turk, published with Springer in 2007. The current content has been completely renewed to incorporate the advancements of science and technology in the field since then. This book provides unique contributions from field experts and from the International Precipitation Working Group (IPWG). The book will be of interest to meteorologists, hydrologists, climatologists, water management authorities, students at various levels and many other parties interested in making use of satellite precipitation data sets. Chapter “TAMSAT” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.


Nanomaterials for Security

Nanomaterials for Security

Author: Janez Bonča

Publisher: Springer

Published: 2016-07-20

Total Pages: 337

ISBN-13: 9401775931

DOWNLOAD EBOOK

This book comprises 25 contributions focussed on nanotechnology for sensor applications. They stem from presentations at the NATO Advanced Research Workshop "Nanomaterials for Security". The chapters cover a broad but interrelated range of topics, including nanophysics, nanotechnology, nanomaterials, sensors, biosensor security systems, and explosive detection. They reflect many significant advances over the past two years as well as some entirely new directions of research that are just beginning to be explored.