Plutonium

Plutonium

Author: Frank von Hippel

Publisher: Springer Nature

Published: 2019-12-23

Total Pages: 193

ISBN-13: 9811399018

DOWNLOAD EBOOK

This book provides a readable and thought-provoking analysis of the issues surrounding nuclear fuel reprocessing and fast-neutron reactors, including discussion of resources, economics, radiological risk and resistance to nuclear proliferation. It describes the history and science behind reprocessing, and gives an overview of the status of reprocessing programmes around the world. It concludes that such programs should be discontinued. While nuclear power is seen by many as the only realistic solution to the carbon emission problem, some national nuclear establishments have been pursuing development and deployment of sodium-cooled plutonium breeder reactors, and plutonium recycling. Its proponents argue that this system would offer significant advantages relative to current light water reactor technology in terms of greater uranium utilization efficiency, and that separating out the long-lived plutonium and other transuranics from spent fuel and fissioning them in fast reactors would greatly reduce the duration of the toxicity of radioactive waste. However, the history of efforts to deploy this system commercially in a number of countries over the last six decades has been one of economic and technical failure and, in some cases, was used to mask clandestine nuclear weapon development programs. Covering topics of significant public interest including nuclear safety, fuel storage, environmental impact and the spectre of nuclear terrorism, this book presents a comprehensive analysis of the issue for nuclear engineers, policy analysts, government officials and the general public. "Frank von Hippel, Jungmin Kang, and Masafumi Takubo, three internationally renowned nuclear experts, have done a valuable service to the global community in putting together this book, which both historically and comprehensively covers the “plutonium age” as we know it today. They articulate in a succinct and clear manner their views on the dangers of a plutonium economy and advocate a ban on the separation of plutonium for use in the civilian fuel cycle in view of the high proliferation and nuclear-security risks and lack of economic justification." (Mohamed ElBaradei, Director General, International Atomic Energy Agency (1997-2009), Nobel Peace Prize (2005)) "The 1960s dream of a ‘plutonium economy’ has not delivered abundant low-cost energy, but instead has left the world a radioactive legacy of nuclear weapons proliferation and the real potential for nuclear terrorism. Kang, Takubo, and von Hippel explain with power and clarity what can be done to reduce these dangers. The governments of the remaining countries whose nuclear research and development establishments are still pursuing the plutonium dream should pay attention.” (Senator Edward Markey, a leader in the US nuclear-disarmament movement as a member of Congress since 1976) "The authors have done an invaluable service by putting together in one place the most coherent analysis of the risks associated with plutonium, and the most compelling argument for ending the practice of separating plutonium from spent fuel for any purpose. They have given us an easily accessible history of the evolution of thinking about the nuclear fuel cycle, the current realities of nuclear power around the world and, arguably most important, a clear alternative path to deal with the spent fuel arising from nuclear reactors for decades to centuries to come." (Robert Gallucci, Chief US negotiator with North Korea (1994); Dean, Georgetown University School of Foreign Service (1996-2009); President, MacArthur Foundation (2009-2014))


Plutonium for Energy?

Plutonium for Energy?

Author: Alan Kuperman

Publisher:

Published: 2018-10-19

Total Pages:

ISBN-13: 9781732907706

DOWNLOAD EBOOK

Plutonium is a controversial fuel for three reasons: it can be used to make nuclear weapons, causes cancer, and is extremely costly to produce. Yet, relatively little information has been publicly available regarding the main use of this fuel around the world, in traditional ("light water") nuclear power reactors. This book offers the first comprehensive global study of plutonium "mixed oxide" (MOX) fuel in those reactors. Field research was conducted in all seven countries that have commercially manufactured or used such MOX: Belgium, France, Germany, Japan, the Netherlands, Switzerland, and the United Kingdom. The chapters explain why five of the countries have decided to phase out MOX, due to concerns about security, economics, safety, the environment, and public acceptance. This volume should inform ongoing decision-making - in China, Japan, South Korea, the United States, and beyond - about whether to recycle plutonium for energy.


Review of the Department of Energy's Plans for Disposal of Surplus Plutonium in the Waste Isolation Pilot Plant

Review of the Department of Energy's Plans for Disposal of Surplus Plutonium in the Waste Isolation Pilot Plant

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2020-06-01

Total Pages: 225

ISBN-13: 0309498619

DOWNLOAD EBOOK

In 2018, the National Academies of Sciences, Engineering, and Medicine issued an Interim Report evaluating the general viability of the U.S. Department of Energy's National Nuclear Security Administration's (DOE-NNSA's) conceptual plans for disposing of 34 metric tons (MT) of surplus plutonium in the Waste Isolation Pilot Plant (WIPP), a deep geologic repository near Carlsbad, New Mexico. It provided a preliminary assessment of the general viability of DOE-NNSA's conceptual plans, focused on some of the barriers to their implementation. This final report addresses the remaining issues and echoes the recommendations from the interim study.


Improving the Scientific Basis for Managing DOE's Excess Nuclear Materials and Spent Nuclear Fuel

Improving the Scientific Basis for Managing DOE's Excess Nuclear Materials and Spent Nuclear Fuel

Author: National Research Council

Publisher: National Academies Press

Published: 2003-06-09

Total Pages: 124

ISBN-13: 0309087228

DOWNLOAD EBOOK

The production of nuclear materials for the national defense was an intense, nationwide effort that began with the Manhattan Project and continued throughout the Cold War. Now many of these product materials, by-products, and precursors, such as irradiated nuclear fuels and targets, have been declared as excess by the Department of Energy (DOE). Most of this excess inventory has been, or will be, turned over to DOE's Office of Environmental Management (EM), which is responsible for cleaning up the former production sites. Recognizing the scientific and technical challenges facing EM, Congress in 1995 established the EM Science Program (EMSP) to develop and fund directed, long-term research that could substantially enhance the knowledge base available for new cleanup technologies and decision making. The EMSP has previously asked the National Academies' National Research Council for advice for developing research agendas in subsurface contamination, facility deactivation and decommissioning, high-level waste, and mixed and transuranic waste. For this study the committee was tasked to provide recommendations for a research agenda to improve the scientific basis for DOE's management of its high-cost, high-volume, or high-risk excess nuclear materials and spent nuclear fuels. To address its task, the committee focused its attention on DOE's excess plutonium-239, spent nuclear fuels, cesium-137 and strontium-90 capsules, depleted uranium, and higher actinide isotopes.


Plutonium and Highly Enriched Uranium, 1996

Plutonium and Highly Enriched Uranium, 1996

Author: David Albright

Publisher:

Published: 1997

Total Pages: 544

ISBN-13:

DOWNLOAD EBOOK

Plutonium and highly enriched uranium (HEU) are the basic materials used in nuclear weapons. Plutonium also plays an important part in the generation of nuclear electricity. Knowing how much plutonium and HEU exists, where and in which form is vital for international security and nuclear commerce. This book is a thorough revision of the World Inventory of Plutonium and highly Enriched Uranium, 1992. It provides a rigorous and comprehensive assessment of the amounts of plutonium and HEU in military and civilian programmes, in nuclear and non-nuclear weapon states, and in countries seeking to acquire nuclear weapons. The capibilities that exist for producing these materials around the world are examined in depth, as are the policy issues raised by them. Containing much new information, this book is indispensable to all those concerned with the great contemporary issues in international nuclear relations: arms reductions in the nuclear weapon states, nuclear proliferation, nuclear smuggling, the roles of plutonium and enriched uranium in the nuclear fuel-cycle, and the disposition of surplus weapon material.


Viability of Inert Matrix Fuel in Reducing Plutonium Amounts in Reactors

Viability of Inert Matrix Fuel in Reducing Plutonium Amounts in Reactors

Author: International Atomic Energy Agency

Publisher: IAEA

Published: 2006

Total Pages: 100

ISBN-13:

DOWNLOAD EBOOK

The reactors around the world have produced more than 2000 tonnes of plutonium, contained in spent fuel or as separated forms through reprocessing. Disposition of fissile materials has become a primary concern of nuclear non-proliferation efforts worldwide. There is a significant interest in IAEA Member States to develop proliferation resistant nuclear fuel cycles for incineration of plutonium such as inert matrix fuels (IMFs). This publication reviews the status of potential IMF candidates and describes several identified candidate materials for both fast and thermal reactors: MgO, ZrO2, SiC, Zr alloy, SiAl, ZrN; some of these have undergone test irradiations and post irradiation examination. Also discussed are modelling of IMF fuel performance and safety analysis. System studies have identified strategies for both implementation of IMF fuel as homogeneous or heterogeneous phases, as assemblies or core loadings and in existing reactors in the shorter term, as well as in new reactors in the longer term.


Radioisotope Power Systems

Radioisotope Power Systems

Author: National Research Council

Publisher: National Academies Press

Published: 2009-08-14

Total Pages: 68

ISBN-13: 0309138574

DOWNLOAD EBOOK

Spacecraft require electrical energy. This energy must be available in the outer reaches of the solar system where sunlight is very faint. It must be available through lunar nights that last for 14 days, through long periods of dark and cold at the higher latitudes on Mars, and in high-radiation fields such as those around Jupiter. Radioisotope power systems (RPSs) are the only available power source that can operate unconstrained in these environments for the long periods of time needed to accomplish many missions, and plutonium-238 (238Pu) is the only practical isotope for fueling them. Plutonium-238 does not occur in nature. The committee does not believe that there is any additional 238Pu (or any operational 238Pu production facilities) available anywhere in the world.The total amount of 238Pu available for NASA is fixed, and essentially all of it is already dedicated to support several pending missions-the Mars Science Laboratory, Discovery 12, the Outer Planets Flagship 1 (OPF 1), and (perhaps) a small number of additional missions with a very small demand for 238Pu. If the status quo persists, the United States will not be able to provide RPSs for any subsequent missions.


Analysis of Cancer Risks in Populations Near Nuclear Facilities

Analysis of Cancer Risks in Populations Near Nuclear Facilities

Author: National Research Council

Publisher: National Academies Press

Published: 2012-06-29

Total Pages: 424

ISBN-13: 0309255716

DOWNLOAD EBOOK

In the late 1980s, the National Cancer Institute initiated an investigation of cancer risks in populations near 52 commercial nuclear power plants and 10 Department of Energy nuclear facilities (including research and nuclear weapons production facilities and one reprocessing plant) in the United States. The results of the NCI investigation were used a primary resource for communicating with the public about the cancer risks near the nuclear facilities. However, this study is now over 20 years old. The U.S. Nuclear Regulatory Commission requested that the National Academy of Sciences provide an updated assessment of cancer risks in populations near USNRC-licensed nuclear facilities that utilize or process uranium for the production of electricity. Analysis of Cancer Risks in Populations near Nuclear Facilities: Phase 1 focuses on identifying scientifically sound approaches for carrying out an assessment of cancer risks associated with living near a nuclear facility, judgments about the strengths and weaknesses of various statistical power, ability to assess potential confounding factors, possible biases, and required effort. The results from this Phase 1 study will be used to inform the design of cancer risk assessment, which will be carried out in Phase 2. This report is beneficial for the general public, communities near nuclear facilities, stakeholders, healthcare providers, policy makers, state and local officials, community leaders, and the media.