Synthesizing current information about sensory-motor plasticity, Neural Plasticity in Adult Somatic Sensory-Motor Systems provides an up-to-date description of the dynamic processes that occur in somatic sensory-motor cortical circuits or somatic sensory pathways to the cortex due to experience, learning, or damage to the nervous system. The book e
This broad exploration of research in plasticity in sensory systems focuses on visual and auditory systems. Topics include visual and visuomotor learning, sensory adaptations as a result of visual loss in childhood, plasticity in the adult visual system, plasticity across the senses, and new techniques in vision recovery, rehabilitation, and sensory substitution.
The auditory system has a remarkable ability to adjust to an ever-changing environment. The six review chapters that comprise Plasticity of the Central Auditory System cover a spectrum of issues concerning this ability to adapt, defined by the widely applicable term "plasticity". With chapters focusing on the development of the cochlear nucleus, the mammalian superior olivary complex, plasticity in binaural hearing, plasticity in the auditory cortex, neural plasticity in bird songs, and plasticity in the insect auditory system, this volume represents much of the most current research in this field. The volume is thorough enough to stand alone, but is closely related a previous SHAR volume, Development of the Auditory System (Volume 9) by Rubel, Popper, and Fay. The book fully addresses the difficulties, challenges, and complexities of this topic as it applies to the auditory development of a wide variety of species.
Traumatic brain injury (TBI) remains a significant source of death and permanent disability, contributing to nearly one-third of all injury related deaths in the United States and exacting a profound personal and economic toll. Despite the increased resources that have recently been brought to bear to improve our understanding of TBI, the developme
Neural plasticity--the brain's ability to change in response to normal developmental processes, experience, and injury--is a critically important phenomenon for both neuroscience and psychology. Increasing evidence about the extent of plasticity--long past the supposedly critical first three years--has recently emerged. Neural Plasticity offers the first succinct and lucid integration of this research and its implications. Pointing out the negative and the positive consequences of plasticity, Peter Huttenlocher describes plasticity in children and adults (in normal aging and in response to trauma), in sensory systems, the motor cortex, higher cortical functions, and language development, proceeding system by system, and paying particular attention to the cerebral cortex. One of the book's strengths is its range of references, not only to studies on human subjects but to the experimental study of animal models as well. This book will be a unique contribution to research and to the literature on clinical neuroscience.
Written by an award-winning developmental neuroscientist, this is a comprehensive and cutting-edge account of the latest research on the adolescent brain.
This volume makes clear that the cognitive and behavioural symptoms of neurologic disorders and syndromes are dynamic and changing. Each chapter describes the neuroplastic processes at work in a particular condition, giving rise to these ongoing cognitive changes.
Despite the intensive experimental and theoretical studies for over a century, the general processes involved in neural control of pasture and movement, in learning of motor behaviour in healthy subjects and in adaptation in pathology were and remain a challenging problems for the scientists in the field of sensorimotor control. The book is the outcome of the Advanced Research Workshop Sensorimotor Control, where the focus was on the state and the perspectives of the study in the field.