Plastic Deformation of Materials

Plastic Deformation of Materials

Author: R. J. Arsenault

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 525

ISBN-13: 1483218155

DOWNLOAD EBOOK

Treatise on Materials Science and Technology, Volume 6: Plastic Deformation of Materials covers the fundamental properties and characterization of materials, ranging from simple solids to complex heterophase systems. The book presents articles on the low temperature of deformation of bcc metals and their solid-solution alloys; the cyclic deformation of metals and alloys; and the high-temperature diffusion-controlled creep of some metals and alloys, with particular reference to the various creep mechanisms. The text also includes articles on superplasticity; the fatigue deformation of polymers; the low temperature deformation of crystalline nonmetals; and the recovery and recrystallization during high temperature deformation. Professional scientists and engineers, as well as graduate students in materials science and associated fields will find the book invaluable.


Testing of the Plastic Deformation of Metals

Testing of the Plastic Deformation of Metals

Author: T. W. Clyne

Publisher: Cambridge University Press

Published: 2021-06-10

Total Pages: 297

ISBN-13: 1108837891

DOWNLOAD EBOOK

Discover a novel approach to the subject, providing detailed information about established and innovative mechanical testing procedures.


Plasticity and Creep of Metals

Plasticity and Creep of Metals

Author: Andrew Rusinko

Publisher: Springer Science & Business Media

Published: 2011-07-24

Total Pages: 442

ISBN-13: 3642212131

DOWNLOAD EBOOK

This book serves both as a textbook and a scientific work. As a textbook, the work gives a clear, thorough and systematic presentation of the fundamental postulates, theorems and principles and their applications of the classical mathematical theories of plasticity and creep. In addition to the mathematical theories, the physical theory of plasticity, the book presents the Budiansky concept of slip and its modification by M. Leonov. Special attention is given to the analysis of the advantages and shortcomings of the classical theories. In its main part, the book presents the synthetic theory of irreversible deformations, which is based on the mathematical Sanders flow plasticity theory and the physical theory, the Budiansky concept of slip. The main peculiarity of the synthetic theory is that the formulae for both plastic and creep deformation, as well their interrelations, can be derived from the single constitutive equation. Furthermore, the synthetic theory, as physical one, can take into account the real processes that take place in solids at irreversible deformation. This widens considerably the potential of the synthetic theory. In the framework of the synthetic theory such problems as creep delay, the Hazen-Kelly effect, the deformation at the break of the load trajectory, the influence of the rate of loading on the stress-strain diagram, creep at the changes of load, creep at unloading and reversed creep, have been analytically described. In the last chapter, the book shows the solution of some contemporary problems of plasticity and creep: Creep deformation at cyclic abrupt changes of temperature, The influence of irradiation on the plastic and creep deformation, Peculiarities of deformation at the phase transformation of some metals.


Plasticity Theory

Plasticity Theory

Author: Jacob Lubliner

Publisher: Courier Corporation

Published: 2013-04-22

Total Pages: 548

ISBN-13: 0486318206

DOWNLOAD EBOOK

The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and geotechnical engineers, metallurgists and others. The necessary mathematics and basic mechanics and thermodynamics are covered in an introductory chapter, making the book a self-contained text suitable for advanced undergraduates and graduate students, as well as a reference for practitioners of solid mechanics.


Unit Manufacturing Processes

Unit Manufacturing Processes

Author: National Research Council

Publisher: National Academies Press

Published: 1995-01-03

Total Pages: 228

ISBN-13: 0309176670

DOWNLOAD EBOOK

Manufacturing, reduced to its simplest form, involves the sequencing of product forms through a number of different processes. Each individual step, known as an unit manufacturing process, can be viewed as the fundamental building block of a nation's manufacturing capability. A committee of the National Research Council has prepared a report to help define national priorities for research in unit processes. It contains an organizing framework for unit process families, criteria for determining the criticality of a process or manufacturing technology, examples of research opportunities, and a prioritized list of enabling technologies that can lead to the manufacture of products of superior quality at competitive costs. The study was performed under the sponsorship of the National Science Foundation and the Defense Department's Manufacturing Technology Program.


Mechanics of Sheet Metal Forming

Mechanics of Sheet Metal Forming

Author: D. Koistinen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 412

ISBN-13: 1461328802

DOWNLOAD EBOOK

This volume records the proceedings of an international symposium on "ME CHANICS OF SHEET METAL FORMING: Material Behavior and Deformation Analysis." It was sponsored and held at the General Motors Research Labora tories on October 17-18, 1977. This symposium was the twenty-first in an annual series. The objective of this symposium was to discuss the research frontiers in experimental and theoretical methods of sheet metal forming analysis and, also, to determine directions of future research to advance technology that would be useful in metal stamping plants. Metal deformation analyses which provide guide lines for metal flanging are already in use. Moreover, recent advances in computer techniques for solving plastic flow equations and in measurements of material parameters are leading to dynamic models of many stamping operations. These models would accurately predict the stresses and strains in the sheet as a function of punch travel. They would provide the engineer with the knowledge he needs to improve die designs. The symposium papers were organized into five sessions: the state of the art, constitutive relations of sheet metal, role of friction, sheet metal formability, and deformation analysis of stamping operations. We believe this volume not only summarizes the various viewpoints at the time of the symposium, but also pro vides an outlook for materials and mechanics research in the future.


Dislocations and Plastic Deformation

Dislocations and Plastic Deformation

Author: I. Kovács

Publisher: Elsevier

Published: 2016-07-08

Total Pages: 359

ISBN-13: 1483146189

DOWNLOAD EBOOK

Dislocations and Plastic Deformation deals with dislocations and plastic deformation, and specifically discusses topics ranging from deformation of single crystals and dislocations in the lattice to the fundamentals of the continuum theory, the properties of point defects in crystals, multiplication of dislocations, and partial dislocations. The effect of lattice defects on the physical properties of metals is also considered. Comprised of nine chapters, this book begins by providing a short and, where possible, precise explanation of dislocation theory. The first six chapters discuss the properties of dislocations and point defects both in crystals and in an elastic continuum. The reader is then introduced to some applications of dislocation theory that show, for instance, the difficulties involved in understanding the hardening of alloys and the work-hardening of pure metals. This book concludes by analyzing the effect of heat treatment on the defect structure in metals. This text will be of interest to students and practitioners in the field of physics.


Crystal Plasticity Finite Element Methods

Crystal Plasticity Finite Element Methods

Author: Franz Roters

Publisher: John Wiley & Sons

Published: 2011-08-04

Total Pages: 188

ISBN-13: 3527642099

DOWNLOAD EBOOK

Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.