Plasma-neutral Interactions as an Energy Sink in the Edge of the Madison Symmetric Torus

Plasma-neutral Interactions as an Energy Sink in the Edge of the Madison Symmetric Torus

Author: Ryan Joseph Norval

Publisher:

Published: 2019

Total Pages: 145

ISBN-13:

DOWNLOAD EBOOK

Reversed field pinch (RFP) plasmas are high density, moderate temperature plasmas, which efficiently utilize magnetic fields for fusion research and astrophysical studies. RFPs are operated with either a multihelicity (MH) or a quasi-single helicity (QSH) magnetic core. Core plasma confinement and heating is the main goal of RFP research. The influence of the plasma edge on the RFP energy balance has not been systematically studied. The Madison Symmetric Torus (MST), a large RFP device with a limiter, is ideal for studying the plasma-wall interaction (PWI) in the RFP edge. The RFP edge is a domain with a high fraction of neutral particles produced by neutralization of impinging plasma ions on the vessel wall and limiter. Neutral particles affect the plasma energy balance through the processes of dissociation, ionization, charge exchange, and radiation. In this work, boundary-viewing cameras are used to image the plasma edge. Absolute calibration of the camera system enables measurement of the D[subscript alpha] photon flux generated by PWI. Langmuir probes measure electron density (n[subscript e]) and electron temperature (T[subscript e]) in the edge. Core n[subscript e] and T[subscript e] are measured by an interferometer and a Thomson scattering diagnostic respectively. Knowledge of n[subscript e] and T[subscript e] is required to convert photon fluxes into particle fluxes by converting D[subscript alpha] atomic line emission intensities into particle fluxes using appropriate atomic data for excitation and radiative decay of the relevant line transitions. A helical bulge in the plasma pressure was discovered in QSH plasmas. The edge pressure maximum is phase-aligned to the magnetic mode in the plasma core domain. By referring to these experimental data from cameras and Langmuir probes, a three-dimensional (3D) plasma edge temperature and density was constructed and used to the fully model the 3D kinetic neutral particle model EIRENE. A method of comparison between modeled EIRENE images of D[subscript alpha] emission with experimental data served as a first detailed benchmark for MST. Synthetic images are compared to experimental images validating the EIRENE model. For the first time, 3D profiles of neutral density in MST are constructed using EIRENE. This fully 3D neutral distribution then enabled an investigation of the role of neutral particles to the RFP energy balance. Neutral particles account for a significant percentage of power loss in QSH plasmas. Neutral particles account for up to 30% of the power losses in the plasma edge domain of MST. The main fraction is established by electron-impact ionization and molecular dissociation events. The remaining fraction is dissipated by charge-exchange. By injecting gas directly into the helical bulge, a QSH plasma may be fueled at 74% efficiency compared to 52% fueling efficiency at other locations. The localization of the PWI in the QSH mode may be exploitable in future RFPs by designing divertor-like edges where particles can be effectively pumped out. In addition control of the PWI could reduce energy losses in QSH plasma by up to 20% of total input power. Understanding the magnitude of these losses and what drives them can lead to improved optimization of the RFP as a fusion device.


Frontiers in High Energy Density Physics

Frontiers in High Energy Density Physics

Author: National Research Council

Publisher: National Academies Press

Published: 2003-05-11

Total Pages: 177

ISBN-13: 030908637X

DOWNLOAD EBOOK

Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.


Theory of Fusion Plasmas

Theory of Fusion Plasmas

Author: Olivier Sauter

Publisher: American Institute of Physics

Published: 2008-12-02

Total Pages: 400

ISBN-13: 9780735406001

DOWNLOAD EBOOK

The Joint Varenna-Lausanne International Workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favorable for informal and in depth discussions. Invited and contributed papers present state-of-the art researches in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always allows a fruitful mix of experienced researchers and students, to allow for a better understanding of the key theoretical physics models and applications, such as: Theoretical issues related to burning plasmas; Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive; Macroinstabilities; Plasma-Edge Physics and Divertors; Fast particles instabilities.


Controlled Fusion and Plasma Physics

Controlled Fusion and Plasma Physics

Author: Kenro Miyamoto

Publisher: Taylor & Francis

Published: 2006-10-23

Total Pages: 393

ISBN-13: 1584887109

DOWNLOAD EBOOK

Resulting from ongoing, international research into fusion processes, the International Tokamak Experimental Reactor (ITER) is a major step in the quest for a new energy source.The first graduate-level text to cover the details of ITER, Controlled Fusion and Plasma Physics introduces various aspects and issues of recent fusion research activ


Tokamaks

Tokamaks

Author: John Wesson

Publisher: Oxford University Press

Published: 2011-10-13

Total Pages: 828

ISBN-13: 0199592233

DOWNLOAD EBOOK

The tokamak is the principal tool in controlled fusion research. This book acts as an introduction to the subject and a basic reference for theory, definitions, equations, and experimental results. The fourth edition has been completely revised, describing their development of tokamaks to the point of producing significant fusion power.


Stellarator and Heliotron Devices

Stellarator and Heliotron Devices

Author: Masahiro Wakatani

Publisher: Oxford University Press, USA

Published: 1998

Total Pages: 462

ISBN-13: 9780195078312

DOWNLOAD EBOOK

This monograph describes plasma physics for magnetic confinement of high temperature plasmas in nonaxisymmetric toroidal magnetic fields or stellarators. The techniques are aimed at controlling nuclear fusion for continuous energy production. While the focus is on the nonaxisymmetric toroidal field, or heliotron, developed at Kyoto University, the physics applies equally to other stellarators and axisymmetric tokamaks. The author covers all aspects of magnetic confinement, formation of magnetic surfaces, magnetohydrodynamic equilibrium and stability, single charged particle confinement, neoclassical transport and plasma heating. He also reviews recent experiments and the prospects for the next generation of devices.


Tokamak Start-Up: Problems and Scenarios Related to the Transient Phases of a Thermonuclear Fusion Reactor (Ettor Majorana International Science Series)

Tokamak Start-Up: Problems and Scenarios Related to the Transient Phases of a Thermonuclear Fusion Reactor (Ettor Majorana International Science Series)

Author: Heinz Knoepfel

Publisher: Springer

Published: 2013-12-19

Total Pages: 425

ISBN-13: 1475718896

DOWNLOAD EBOOK

This book contains the papers presented at the Course on "Tokamak Startup - Problems and Scenarios Related to the Transient Phases of a Thermonuclear Fusion Reactor" which was held in Erice, July 14-20, 1985. The fact that the critical startup and transient phases of a tokamak reactor are now the specific subject of a comprehensive international gathering of fusion specialists seems indicative of the substantial pro gress made in recent years towards attaining controlled ignition of a nuclear fusion fuel, i.e. towards demonstrating the scientific feasibili ty of controlled thermonuclear fusion. In fact, the steady-state burning phase has attracted so far most of the attention of fusion physicists and engineers, as it is conceptually more rewarding, and theoretically easier to handle. However, as for many large engineering systems, - nuclear fis- ... ':1' " . 10 ' ... Entrance to San Rocco's lecturing hall v sion power plants, or aerospace crafts, for example - the major issues of design and operation lie often in the startup, shutdown and power tran sieQt phases, rather than at the full load, or at cruising regimes. In ehoosing the contributions to this 7th Course of Prof. B.


Inertial Electrostatic Confinement (IEC) Fusion

Inertial Electrostatic Confinement (IEC) Fusion

Author: George H. Miley

Publisher: Springer Science & Business Media

Published: 2013-12-12

Total Pages: 415

ISBN-13: 1461493382

DOWNLOAD EBOOK

This book provides readers with an introductory understanding of Inertial Electrostatic Confinement (IEC), a type of fusion meant to retain plasma using an electrostatic field. IEC provides a unique approach for plasma confinement, as it offers a number of spin-off applications, such as a small neutron source for Neutron Activity Analysis (NAA), that all work towards creating fusion power. The IEC has been identified in recent times as an ideal fusion power unit because of its ability to burn aneutronic fuels like p-B11 as a result of its non-Maxwellian plasma dominated by beam-like ions. This type of fusion also takes place in a simple mechanical structure small in size, which also contributes to its viability as a source of power. This book posits that the ability to study the physics of IEC in very small volume plasmas makes it possible to rapidly investigate a design to create a power-producing device on a much larger scale. Along with this hypothesis the book also includes a conceptual experiment proposed for demonstrating breakeven conditions for using p-B11 in a hydrogen plasma simulation. This book also: Offers an in-depth look, from introductory basics to experimental simulation, of Inertial Electrostatic Confinement, an emerging method for generating fusion power Discusses how the Inertial Electrostatic Confinement method can be applied to other applications besides fusion through theoretical experiments in the text Details the study of the physics of Inertial Electrostatic Confinement in small-volume plasmas and suggests that their rapid reproduction could lead to the creation of a large-scale power-producing device Perfect for researchers and students working with nuclear fusion, Inertial Electrostatic Confinement (IEC) Fusion: Fundamentals and Applications also offers the current experimental status of IEC research, details supporting theories in the field and introduces other potential applications that stem from IEC.


14 MeV Neutrons

14 MeV Neutrons

Author: Vladivoj Valkovic

Publisher: CRC Press

Published: 2015-08-25

Total Pages: 500

ISBN-13: 1482238012

DOWNLOAD EBOOK

Despite the often difficult and time-consuming effort of performing experiments with fast (14 MeV) neutrons, these neutrons can offer special insight into nucleus and other materials because of the absence of charge. 14 MeV Neutrons: Physics and Applications explores fast neutrons in basic science and applications to problems in medicine, the envir


New Foundation in the Sciences

New Foundation in the Sciences

Author: V. Christianto, F. Smarandache, R.N. Boyd

Publisher: Infinite Study

Published:

Total Pages: 501

ISBN-13:

DOWNLOAD EBOOK

It is widely known among the Frontiers of physics, that “sweeping under the rug” practice has been quite the norm rather than exception. In other words, the leading paradigms have strong tendency to be hailed as the only game in town.