Plant hormones play a crucial role in controlling the way in which plants growand develop. Whilemetabolism providesthepowerand buildingblocks for plant life, it is the hormones that regulate the speed of growth of the individual parts and integrate these parts to produce the form that we recognize as a plant. In addition, theyplayacontrolling role inthe processes of reproduction. This book is a description ofthese natural chemicals: how they are synthesizedand metabolized; howthey work; whatwe knowoftheir molecular biology; how we measure them; and a description ofsome ofthe roles they play in regulating plant growth and development. Emphasis has also been placed on the new findings on plant hormones deriving from the expanding use ofmolecular biology as a tool to understand these fascinating regulatory molecules. Even at the present time, when the role of genes in regulating all aspects of growth and development is considered of prime importance, it is still clear that the path of development is nonetheless very much under hormonal control, either via changes in hormone levels in response to changes in gene transcription, or with the hormones themselves as regulators ofgene transcription. This is not a conference proceedings, but a selected collection ofnewly written, integrated, illustrated reviews describing our knowledge of plant hormones, and the experimental work that is the foundation of this knowledge.
The plant cell wall plays a vital role in almost every aspect of plant physiology. New techniques in spectroscopy, biophysics and molecular biology have revealed the extraordinary complexity of its molecular architecture and just how important this structure is in the control of plant growth and development. The Second Edition of this accessible and integrated textbook has been revised and updated throughout. As well as focusing on the structure and function of plant cell walls the book also looks at the applications of this research. It discusses how plant cell walls can be exploited by the biotechnology industry and some of the main challenges for future research. Key topics include: architecture and skeletal functions of the wall; cell-wall formation; control of cell growth; role in intracellular transport; interactions with other organisms; cell-wall degradation; biotechnological applications of cell-walls; role in diet and health. This textbook provides a clear, well illustrated introduction to the physiology and biochemistry of plant cell walls which will be invaluable to upper level undergraduate and post graduate students of plant physiology, plant pathology, plant biotechnology and biochemistry.
1 A Leaf Cell Consists of Several Metabolic Compartments 2 The Use of Energy from Sunlight by Photosynthesis is the Basis of Life on Earth 3 Photosynthesis is an Electron Transport Process 4 ATP is Generated by Photosynthesis 5 Mitochondria are the Power Station of the Cell 6 The Calvin Cycle Catalyzes Photosynthetic CO2 Assimilation 7 In the Photorespiratory Pathway Phosphoglycolate Formed by the Oxygenase Activity of RubisCo is Recycled 8 Photosynthesis Implies the Consumption of Water 9 Polysaccharides are Storage and Transport Forms of Carbohydrates Produced by Photosynthesis 10Nitrate Assimilation is Essential for the Synthesis of Organic Matter 11 Nitrogen Fixation Enables the Nitrogen in the Air to be Used for Plant Growth 12 Sulfate Assimilation Enables the Synthesis of Sulfur Containing Substances 13 Phloem Transport Distributes Photoassimilates to the Various Sites of Consumption and Storage 14 Products of Nitrate Assimilation are Deposited in Plants as Storage Proteins 15 Glycerolipids are Membrane Constituents and Function as Carbon Stores 16 Secondary Metabolites Fulfill Specific Ecological Functions in Plants 17 Large Diversity of Isoprenoids has Multiple Funtions in Plant Metabolism 18 Phenylpropanoids Comprise a Multitude of Plant Secondary Metabolites and Cell Wall Components 19 Multiple Signals Regulate the Growth and Development of Plant Organs and Enable Their Adaptation to Environmental Conditions 20 A Plant Cell has Three Different Genomes 21 Protein Biosynthesis Occurs at Different Sites of a Cell 22 Gene Technology Makes it Possible to Alter Plants to Meet Requirements of Agriculture, Nutrition, and Industry.
This book provides up-to-date coverage at an advanced level of a range of topics in the biochemistry and molecular biology of plant hormones, with particular emphasis on biosynthesis, metabolism and mechanisms of action. Each contribution is written by acknowledged experts in the field, providing definitive coverage of the field. No other modern book covers this subject matter at such an advanced level so comprehensively. It will be invaluable to university libraries and scientists in the plant biotechnology industries.
Biologists worldwide now speak the scientific language of molecular biology and use the same molecular tools. Interest is growing in the molecular biology of abiotic stress tolerance and modes of installing better tolerant mechanisms in crop plants. Current studies make plants capable of sustaining their yields even under stressful conditions. Further, this information may form the basis for its application in biotechnology and bioinformatics.
The purpose of this text is to examine the assimilation and metabolism of carbon and nitrogen in plants. These processes are dealt with in an integrative fashion assessing the physiology, biochemistry and molecular biology of each topic being discussed.
The book is exceptional in its organization with three major characteristics of plant system i.e. Plant Physiology, Biochemistry and Molecular Biology been provided under one canopy. Physiology, which deals with all the vital activities of a plant and also explains how it reacts to sustain in natural distress similarly within the plant, the types of physiological actions at biochemical level forming innumerable compounds through chains of biochemical reactions at various levels of plant growth and development becomes Biochemistry. However, the curiosity and thirst of knowledge of human being is endless. Man has been providing still inside up to the molecular and genetic levels to understand the nature of biochemical reactions and to control if possible up to the desired level and that is Molecular Biology. Now this is the time to elevate most relevant work of academic and applied importance out of vast research of diverse significance done in the last fifty years.
Seed dormancy systems and concepts; Bud dormancy systems and concepts;Physiology/temperature, light, stress; Biochemistry; Molecular biology; Dormancy modeling.
A stunning landmark co-publication between the American Society of Plant Biologists and Wiley-Blackwell. The Molecular Life of Plants presents students with an innovative, integrated approach to plant science. It looks at the processes and mechanisms that underlie each stage of plant life and describes the intricate network of cellular, molecular, biochemical and physiological events through which plants make life on land possible. Richly illustrated, this book follows the life of the plant, starting with the seed, progressing through germination to the seedling and mature plant, and ending with reproduction and senescence. This "seed-to-seed" approach will provide students with a logical framework for acquiring the knowledge needed to fully understand plant growth and development. Written by a highly respected and experienced author team The Molecular Life of Plants will prove invaluable to students needing a comprehensive, integrated introduction to the subject across a variety of disciplines including plant science, biological science, horticulture and agriculture.