Plant Peroxidases: Biochemistry and Physiology recoge los últimos avances en el campo de las peroxidasas vegetales. Las peroxidasas son un grupo de enzimas que se encuentran ampliamente distribuidas en toda la escala filogenética y catalizan la oxidación de un amplio número de sustratos orgánicos e inorgánicos, utilizando el poder oxidante del peróxido de hidrógeno. Además de su interés académico y fisiológico, estas enzimas son ampliamente utilizadas en laboratorios clínicos y en la industria. El presente libro consta de 47 artículos de investigaciónen en los que se tratan diversos aspectos de las peroxidasas como su estructura, enzimología genética, fisiología, localización y aplicaciones. Las aportaciones a este libro han sido realizadas por especialistas de todo el mundo que se reunieron en Murcia en el año 2002 durante el Congreso titulado VI International Plant Peroxidase Symposium
Plant pathology embraces all aspects of biological and scientific activity which are concerned with understanding the complex phenomena of diseases in plants. Physiological plant pathology represents those specialities within plant pathology which focus on the physiological and biochemical activities of pathogens and on the response of host plant tissues. Today there is an increasing recognition on the part of the scientific agri cultural community that only through a deeper and more fundamental under standing of all the interacting components of the agricultural biota can we expect to improve our capabilities of feeding an expanding world population. It is in this context that physiological plant pathology has assumed new significance within the broader field of plant pathology. No longer are studies on the biochemistry and physiology of pathogens and pathogenesis merely isolated academic exercises; rather, a substantial coherent body of knowledge is accumulating upon which our understanding of the process of disease developmen t and host resistance is being founded. It is from these foundations of knowledge that ultimately new insights into the control of plant diseases may be expected to grow. It seems appropriate, therefore, that at regular intervals those involved in the various subspecialities encompassing the broadest aspects of physiological plant pathology reassess the contributions within the particular specialities in the light of new knowledge and technologies for the purpose of articulating new and productive directions for the future.
This book provides an overview of antioxidants and antioxidant enzymes and their role in the mechanisms of signaling and cellular tolerance under stress in plant systems. Major reactive oxygen species (ROS)-scavenging/modulating enzymes include the superoxide dismutase (SOD) that dismutates O2 into H2O2, which is followed by the coordinated action of a set of enzymes including catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX) and peroxiredoxins (Prx) that remove H2O2. In addition to the ROS scavenging enzymes, a number of other enzymes are found in various subcellular compartments, which are involved in maintaining such redox homeostasis either by directly scavenging particular ROS and ROS-byproducts or by replenishing antioxidants. In that respect, these enzymes can be also considered antioxidants. Such enzymes include monodehydroascorbate reductase (MDAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), alternative oxidases (AOXs), peroxidases (PODs) and glutathione S-transferases (GSTs). Some non-enzymatic antioxidants, such as ascorbic acid (vitamin C), carotenes (provitamin A), tocopherols (vitamin E), and glutathione (GSH), work in concert with antioxidant enzymes to sustain an intracellular steady-state level of ROS that promotes plant growth, development, cell cycles and hormone signaling, and reinforces the responses to abiotic and biotic environmental stressors. Offering a unique compilation of information on antioxidants and antioxidant enzymes, this is a valuable resource for advanced students and researchers working on plant biochemistry, physiology, biotechnology, and signaling in cell organelles, and those specializing in plant enzyme technology.
Heme peroxidases are widely distributed in biological systems and are involved in a wide range of processes essential for life. This book provides a comprehensive single source of information on the various aspects of heme peroxidase structure, function and mechanism of action. Chapters written and edited by worldwide experts span a range of heme peroxidases from plants, yeast, bacteria and mammals. Discussed functions of peroxidases range from cell wall synthesis, synthesis of prostaglandins, role in drug suppression of tuberculosis, and antibacterial activity. Included is a discussion of peroxidases that also act as catalases and oxygenases. Heme Peroxidases serves as an essential text for those working in industry and academia in biochemistry and metallobiology.
The Peroxidases in Chemistry and Biology series provides up-to-date information on a wide range of developments in the field of Peroxidases, methods and applications. This is Volume 1 originally published in 1990.
Leading experts from all over the world present an overview of the use of enzymes in industry for: - the production of bulk products, such as glucose, or fructose - food processing and food analysis - laundry and automatic dishwashing detergents - the textile, pulp and paper and animal feed industries - clinical diagnosis and therapy - genetic engineering. The book also covers identification methods of new enzymes and the optimization of known ones, as well as the regulatory aspects for their use in industrial applications. Up to date and wide in scope, this is a chance for non-specialists to acquaint themselves with this rapidly growing field. '...The quality...is so great that there is no hesitation in recommending it as ideal reading for any student requiring an introduction to enzymes. ...Enzymes in Industry - should command a place in any library, industrial or academic, where it will be frequently used.' The Genetic Engineer and Biotechnologist 'Enzymes in Industry' is an excellent introduction into the field of applied enzymology for the reader who is not familiar with the subject. ... offers a broad overview of the use of enzymes in industrial applications. It is up-to-date and remarkable easy to read, despite the fact that almost 50 different authors contributed. The scientist involved in enzyme work should have this book in his or her library. But it will also be of great value to the marketing expert interested in the present use of enzymes and their future in food and nonfood applications.' Angewandte Chemie 'This book should be available to all of those working with, or aspiring to work with, enzymes. In particular academics should use this volume as a source book to ensure that their 'new' projects will not 'reinvent the wheel'.' Journal of Chemical Technology and Biotechnology
Presents a multidisciplinary analysis of the integration among reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS). Since plants are the main source of our food, the improvement of their productivity is the most important task for plant biologists. In this book, leading experts accumulate the recent development in the research on oxidative stress and approaches to enhance antioxidant defense system in crop plants. They discuss both the plant responses to oxidative stress and mechanisms of abiotic stress tolerance, and cover all of the recent approaches towards understanding oxidative stress in plants, providing comprehensive information about the topics. It also discusses how reactive nitrogen species and reactive sulfur species regulate plant physiology and plant tolerance to environmental stresses. Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms covers everything readers need to know in four comprehensive sections. It starts by looking at reactive oxygen species metabolism and antioxidant defense. Next, it covers reactive nitrogen species metabolism and signaling before going on to reactive sulfur species metabolism and signaling. The book finishes with a section that looks at crosstalk among reactive oxygen, nitrogen, and sulfur species based on current research done by experts. Presents the newest method for understanding oxidative stress in plants. Covers both the plant responses to oxidative stress and mechanisms of abiotic stress tolerance Details the integration among reactive oxygen species (ROS), reactive nitrogen species (RNS) and reactive sulfur species (RSS) Written by 140 experts in the field of plant stress physiology, crop improvement, and genetic engineering Providing a comprehensive collection of up-to-date knowledge spanning from biosynthesis and metabolism to signaling pathways implicated in the involvement of RONSS to plant defense mechanisms, Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms is an excellent book for plant breeders, molecular biologists, and plant physiologists, as well as a guide for students in the field of Plant Science.
Interest in the science of exercise dates back to the time of ancient Greece. Today exercise is viewed not only as a leisurely activity but also as an effective preventive and therapeutic tool in medicine. Further biomedical studies in exercise physiology and biochemistry reports that strenuous physical exercise might cause oxidative lipid damage in various tissues. The generation of reactive oxygen species is elevated to a level that overwhelms the tissue antioxidant defense systems resulting in oxidative stress.The Handbook of Oxidants and Antioxidants in Exercise examines the different aspects of exercise-induced oxidative stress, its management, and how reactive oxygen may affect the functional capacity of various vital organs and tissues. It includes key related issues such as analytical methods, environmental factors, nutrition, aging, organ function and several pathophysiological processes.This timely publication will be of relevance to those in biomedical science and was designed to be readily understood by the general scientific audience.