Brighter zinnias, fragrant carnations, snappier green beans Plant Breeding for the Home Gardener makes it easier than ever to breed and grow your own varieties of vegetables and flowers. This comprehensive and accessible guide explains how to decide what to breed, provides simple explanations on how to cross plants, and features a basic primer on genetics and advanced techniques. Case studies provide breeding examples for favorite plants like daffodils, hollyhocks, roses, sweet corn, and tomatoes.
Designed to inform and inspire the next generation of plant biotechnologists Plant Biotechnology and Genetics explores contemporary techniques and applications of plant biotechnology, illustrating the tremendous potential this technology has to change our world by improving the food supply. As an introductory text, its focus is on basic science and processes. It guides students from plant biology and genetics to breeding to principles and applications of plant biotechnology. Next, the text examines the critical issues of patents and intellectual property and then tackles the many controversies and consumer concerns over transgenic plants. The final chapter of the book provides an expert forecast of the future of plant biotechnology. Each chapter has been written by one or more leading practitioners in the field and then carefully edited to ensure thoroughness and consistency. The chapters are organized so that each one progressively builds upon the previous chapters. Questions set forth in each chapter help students deepen their understanding and facilitate classroom discussions. Inspirational autobiographical essays, written by pioneers and eminent scientists in the field today, are interspersed throughout the text. Authors explain how they became involved in the field and offer a personal perspective on their contributions and the future of the field. The text's accompanying CD-ROM offers full-color figures that can be used in classroom presentations with other teaching aids available online. This text is recommended for junior- and senior-level courses in plant biotechnology or plant genetics and for courses devoted to special topics at both the undergraduate and graduate levels. It is also an ideal reference for practitioners.
In the small “Fly Room†at Columbia University, T.H. Morgan and his students, A.H. Sturtevant, C.B. Bridges, and H.J. Muller, carried out the work that laid the foundations of modern, chromosomal genetics. The excitement of those times, when the whole field of genetics was being created, is captured in this book, written in 1965 by one of those present at the beginning. His account is one of the few authoritative, analytic works on the early history of genetics. This attractive reprint is accompanied by a website, http://www.esp.org/books/sturt/history/ offering full-text versions of the key papers discussed in the book, including the world's first genetic map.
This book offers a detailed overview of both conventional and modern approaches to plant breeding. In 25 chapters, it explores various aspects of conventional and modern means of plant breeding, including: history, objective, activities, centres of origin, plant introduction, reproduction, incompatibility, sterility, biometrics, selection, hybridization, methods of breeding both self- and cross- pollinated crops, heterosis, synthetic varieties, induced mutations and polyploidy, distant hybridization, quality breeding, ideotype breeding, resistance breeding, breeding for stress resistance, G x E interactions, tissue culture, genetic engineering, molecular breeding, genomics, gene action and varietal release. The book’s content addresses the needs of students worldwide. Modern methods like molecular breeding and genomics are dealt with extensively so as to provide a firm foundation and equip readers to read further advanced books. Each chapter discusses the respective subject as comprehensively as possible, and includes a section on further reading at the end. Info-boxes highlight the latest advances, and care has been taken to include nearly all topics required under the curricula of MS programs. As such, the book provides a much-needed reference guide for MS students around the globe.
With the rise of genomics, the life sciences have entered a new era. This book provides a comprehensive history of mapping procedures as they were developed in classical genetics. An accompanying volume - From Molecular Genetics to Genomics - covers the history of molecular genetics and genomics. The book shows that the technology of genetic mapping is by no means a recent acquisition of molecular genetics or even genetic engineering. It demonstrates that the development of mapping technologies has accompanied the rise of modern genetics from its very beginnings. In Section One, Mendelian genetics is set in perspective from the viewpoint of the detection and description of linkage phenomena. Section Two addresses the role of mapping for the experimental working practice of classical geneticists, their social interactions and for the laboratory 'life worlds'. With detailed analyses of the scientific practices of mapping and its illustration of the diversity of mapping practices this book is a significant contibution to the history of genetics. A companion volume from the same editors - From Molecular Genetics to Genomics: The Mapping Cultures of Twentieth Century Genetics - covers the history of molecular genetics and genomics.
"Plant transformation technology has played a critical role in advancing biotechnology and fundamental research and evolved as a science. This book describes the breakthrough technologies in all aspects of plant transformation in the last 27 years, which "
The Indian Society of Genetics and Plant Breeding was established in 1941 in recognition of the growing contribution of improved crop varieties to the country's agriculture. Scientific plant breeding had started inIndia soon after the rediscovery of Mendel's laws of heredity. The Indian Agricultural Research Institute set up in 1905 and a number of Agricultural Colleges in different parts of the country carried out some of the earliest work mostly inthe form of pure-line selections. In subsequent years, hybridization programmes in crops like wheat, rice, oilseeds, grain legumes, sugarcane and cotton yielded a large number of improved cultivars with significantly higher yields. A turning point came in the 1960s with the development of hybrids in several crops including inter-specific hybrids in cotton. And when new germplasm with dwarfing genes became available in wheat and rice from CIMMYT and IRRI, respectively,Indian plant breeders quickly incorporated these genes into the genetic background of the country's widely grown varieties with excellent grain quality and other desirable traits. This was to mark the beginning of modem agriculture in India as more and more varieties were developed, characterized by a high harvest index and response to modem farm inputs like the inorganic fertilizers . India's green revolution which has led to major surpluses offood grains and othercommodities like sugar and cotton has been made possible by the work of one of the largest groups of plant breeders working in a coordinated network.
The first edition of Mark Ptashne's 1986 book describing the principles of gene regulation in phage lambda became a classic in both content and form, setting a standard of clarity and precise prose that has rarely been bettered. This edition is a reprint of the original text, together with a new chapter updating the story to 2004. Among the striking new developments are recent findings on long–range interactions between proteins bound to widely separated sites on the phage genome, and a detailed description of how gene activation works.