Plant Genetic Engineering

Plant Genetic Engineering

Author: A.D. Arencibia

Publisher: Elsevier

Published: 2000-02-14

Total Pages: 283

ISBN-13: 008053905X

DOWNLOAD EBOOK

Plant biotechnology offers important opportunities for agriculture, horticulture, and the pharmaceutical and food industry by generating transgenic varieties with altered properties. This is likely to change farming practice and reduce the potential negative impact of plant production on the environment. This volume shows the worldwide advances and potential benefits of plant genetic engineering focusing on the third millennium. The authors discuss the production of transgenic plants resistant to biotic and abiotic stress, the improvement of plant qualities, the use of transgenic plants as bioreactors, and the use of plant genomics for genetic improvement and gene cloning. Unique to this book is the integrative point of view taken between plant genetic engineering and socioeconomic and environmental issues. Considerations of regulatory processes to release genetically modified plants, as well as the public acceptance of the transgenic plants are also discussed.This book will be welcomed by biotechnologists, researchers and students alike working in the biological sciences. It should also prove useful to everyone dedicated to the study of the socioeconomic and environmental impact of the new technologies, while providing recent scientific information on the progress and perspectives of the production of genetically modified plants. The work is dedicated to Professor Marc van Montagu.


Transgenic Plants

Transgenic Plants

Author: Leandro Peña

Publisher: Springer Science & Business Media

Published: 2008-02-05

Total Pages: 427

ISBN-13: 1592598277

DOWNLOAD EBOOK

The aim of Transgenic Plants: Methods and Protocols is to provide a source of information to guide the reader through a wide range of frequently used, broadly applicable, and easily reproducible techniques involved in the gene- tion of transgenic plants. Its step-by-step approach covers a series of methods for genetically transforming plant cells and tissues, and for recovering whole transgenic plants from them. The volume then moves on to the use of sele- able and reporter markers, positive selection, marker elimination after rec- ery of transgenic plants, and the analysis of transgene integration, expression, and localization in the plant genome. Although contributors usually refer to model plants in most chapters, the protocols described herein should be widely applicable to many plant species. The last two sections are devoted to me- ods of risk assessment and to exploring the current and future applications of transgenic technology in agriculture and its social implications in a case study. Transgenic Plants: Methods and Protocols is divided into six major s- tions plus an introduction, comprising 27 chapters. Part I, the Introduction, is a review of the past, present, and perspectives of the transgenic plants, from the discovery of Agrobacterium tumefaciens as a feasible transformation vector, to its use as a tool to study gene expression and function, and the current and possible future applications of this technology in agriculture, industry, and medicine.


Genetic Engineering of Plants

Genetic Engineering of Plants

Author: Tsune Kosuge

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 499

ISBN-13: 1468445448

DOWNLOAD EBOOK

William C. Taylor Department of Genetics University of California Berkeley, California 94720 It is evident by now that there is a great deal of interest in exploiting the new technologies to genetically engineer new forms of plants. A purpose of this meeting is to assess the possibilities. The papers that follow are concerned with the analysis of single genes or small gene families. We will read about genes found within the nucleus, plastids, and bacteria which are responsible for agri culturally important traits. Given that these genes can be isolated by recombinant DNA techniques, there are two possible strategies for plant engineering. One involves isolating a gene from a cultivated plant, changing it in a specific way and then inserting it back into the same plant where it produces an altered gene product. An example might be changing the amino acid composition of a seed pro tein so as to make the seed a more efficient food source. A second strategy is to isolate a gene from one species and transfer it to another species where it produces a desirable feature. An example might be the transfer of a gene which encodes a more efficient pho tosynthetic enzyme from a wild relative into a cultivated species. There are three technical hurdles which must be overcome for either strategy to work. The gene of interest must be physically isolated.


Plant Resistance to Arthropods

Plant Resistance to Arthropods

Author: C. Michael Smith

Publisher: Springer Science & Business Media

Published: 2006-01-16

Total Pages: 421

ISBN-13: 1402037023

DOWNLOAD EBOOK

This book synthesizes new information about the environmental advantages of plant resistance, transgenic resistance, the molecular bases of resistance, and the use of molecular markers to map resistance genes. Readers are presented in-depth descriptions of techniques to quantify resistance, factors affecting resistance expression, and the deployment of resistance genes. New information about gene-for-gene interactions between resistant plants and arthropod biotypes is discussed along with the recent examples of using arthropod resistant plants in integrated pest management systems.


Advances in New Technology for Targeted Modification of Plant Genomes

Advances in New Technology for Targeted Modification of Plant Genomes

Author: Feng Zhang

Publisher: Springer

Published: 2015-04-21

Total Pages: 171

ISBN-13: 1493925563

DOWNLOAD EBOOK

Over the past 50 years, biotechnology has been the major driving force for increasing crop productivity. Particularly, advances in plant genetic engineering technologies have opened up vast new opportunities for plant researchers and breeders to create new crop varieties with desirable traits. Recent development of precise genome modification methods, such as targeted gene knock-out/knock-in and precise gene replacement, moves genetic engineering to another level and offers even more potentials for improving crop production. The work provides an overview of the latest advances on precise genomic engineering technologies in plants. Topics include recombinase and engineered nucleases-mediated targeted modification, negative/positive selection-based homologous recombination and oligo nucleotide-mediated recombination. Finally, challenges and impacts of the new technologies on present regulations for genetic modification organisms (GMOs) will be discussed.


Biotechnology to Enhance Sugarcane Productivity and Stress Tolerance

Biotechnology to Enhance Sugarcane Productivity and Stress Tolerance

Author: Kalpana Sengar

Publisher: CRC Press

Published: 2018-01-12

Total Pages: 284

ISBN-13: 1351648802

DOWNLOAD EBOOK

Sugarcane is the most important plant source for sugar and alcohol production and is cultivated in more than 80 countries in tropical and subtropical areas. However, environmental factors negatively influence its yield and jeopardize the prospect to meet the increasing demand for sugar, other sugarcane derived by products and bioethanol. The development of stress tolerant plants is fundamental for the maintenance and increase of crop yields. Biotechnology to Enhance Sugarcane Productivity and Stress Tolerance provides a comprehensive account of both theoretical and practical aspects of sugarcane production. It contains extensive coverage of genome mapping and molecular breeding in sugarcane and presents the status of the elucidation and improvement of plant genomes of economic interest. Through 14 chapters written by eminent scientists with global influence, this book examines various methods for sugarcane improvement through biotechnology. The book focuses on genetic and physical mapping, positioning, cloning, and monitoring of desirable genes using biotechnological approaches for high sugarcane productivity and the development of stress tolerance. Additional information includes the bioengineering of sugarcane, procedures to boost productivity, genetics and assessments for resistance to drought and salinity, genetics for high yields, and various topics of research on sugarcane genetics. It serves as a detailed reference source for cane growers, sugar and sugarcane technologists, students, and professors.