Planetary Spacecraft Navigation

Planetary Spacecraft Navigation

Author: James Miller

Publisher: Springer

Published: 2018-09-03

Total Pages: 395

ISBN-13: 3319789163

DOWNLOAD EBOOK

This textbook introduces the theories and practical procedures used in planetary spacecraft navigation. Written by a former member of NASA's Jet Propulsion Laboratory (JPL) navigation team, it delves into the mathematics behind modern digital navigation programs, as well as the numerous technological resources used by JPL as a key player in the field. In addition, the text offers an analysis of navigation theory application in recent missions, with the goal of showing students the relationship between navigation theory and the real-world orchestration of mission operations.


Planetary Spacecraft Navigation

Planetary Spacecraft Navigation

Author: James Miller

Publisher: Springer

Published: 2025-01-25

Total Pages: 0

ISBN-13: 9783031719813

DOWNLOAD EBOOK

In this new edition, the authors James Miller and Connie Weeks dive deeper into how computer programming has assisted with planetary spacecraft navigation; evaluating real-world results and relying on complex mathematical theory to observe advancements made in this rapidly accelerating field. This textbook introduces the theories and practical procedures used in planetary spacecraft navigation. Written by a former member of NASA's Jet Propulsion Laboratory (JPL) navigation team with his co-author, it delves into the mathematics behind modern digital navigation programs, as well as the numerous technological resources used by JPL as a key player in the field. In addition, the text offers an analysis of navigation theory application in recent missions, with the goal of showing students the relationship between navigation theory and the real-world orchestration of mission operations.


Spacecraft Navigation and Guidance

Spacecraft Navigation and Guidance

Author: Maxwell Noton

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 193

ISBN-13: 144711583X

DOWNLOAD EBOOK

The analysis and computational techniques associated with the navigation and guidance of spacecraft are now in a mature state of development. However the documentation has remained dispersed throughout conference papers, journals, company and contract rep orts, making it difficult to get a true, comprehensive picture of the subject. This text brings together the body of literature with suitable attention to the necessary underlying mathematics and computational techniques. It covers in detail the necessary orbital mechanics, orbit determination with emphasis on the SRIF algorithm, gr avity assist manoeuvres and guidance, both ground-based and autonomous. Attention is paid to all phases of a space mission including launch and re-entry, and whether culminating in an earth satellite or a deep space mission to planets or primitive bodies. Software associated with the text is available free to the reader by means of the Internet server of the publisher. 'Spacecraft Navigation and Guidance' is an invaluable aid for all those working within astronautics, aeronautics, and control engineering in general.


General Relativity for Planetary Navigation

General Relativity for Planetary Navigation

Author: James Miller

Publisher: Springer Nature

Published: 2021-08-31

Total Pages: 109

ISBN-13: 3030775461

DOWNLOAD EBOOK

This brief approaches General Relativity from a planetary navigation perspective, delving into the unconventional mathematical methods required to produce computer software for space missions. It provides a derivation of the Einstein field equations and describes experiments performed on the Near Earth Asteroid Rendezvous mission, spanning General Relativity Theory from the fundamental assumptions to experimental verification. The software used for planetary missions is derived from mathematics that use matrix notation. An alternative is to use Einstein summation notation, which enables the mathematics to be presented in a compact form but makes the geometry difficult to understand. In this book, the relationship of matrix notation to summation notation is shown. The purpose is to enable the reader to derive the mathematics used in the software in either matrix notation or summation notation. This brief is a useful tool for advanced students and young professionals embarking on careers in planetary navigation.


Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation

Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation

Author: Theodore D. Moyer

Publisher: Wiley-Interscience

Published: 2003-01-31

Total Pages: 584

ISBN-13:

DOWNLOAD EBOOK

A valuable reference for students and professionals in the field of deep space navigation Drawing on fundamental principles and practices developed during decades of deep space exploration at the California Institute of Technology’s Jet Propulsion Laboratory (JPL), this book documents the formation of program Regres of JPL’s Orbit Determination Program (ODP). Program Regres calculates the computed values of observed quantities (e.g., Doppler and range observables) obtained at the tracking stations of the Deep Space Network, and also calculates media corrections for the computed values of the observable and partial derivatives of the computed values of the observables with respect to the solve-for-parameter vector-q. The ODP or any other program which uses its formulation can be used to navigate a spacecraft anywhere in the solar system. A publication of the JPL Deep Space Communications and Navigation System Center of Excellence (DESCANSO), Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation is an invaluable resource for graduate students of celestial mechanics or astrodynamics because it: features the expertise of today’s top scientists places the entire program Regres formulation in an easy-to-access resource describes technology which will be used in the next generation of navigation software currently under development The Deep Space Communications and Navigation Series is authored by scientists and engineers with extensive experience in astronautics, communications, and related fields. It lays the foundation for innovation in the areas of deep space navigation and communications by conveying state-of-the-art knowledge in key technologies.


Optical Navigation for a Spacecraft in a Planetary System

Optical Navigation for a Spacecraft in a Planetary System

Author: John Allen Christian

Publisher:

Published: 2010

Total Pages: 738

ISBN-13:

DOWNLOAD EBOOK

Recent years have seen ambitious robotic exploration missions to other planets and a renewed interest in sending humans beyond low Earth orbit. These activities give rise to a need for autonomous spacecraft operation. Of particular interest here is the ability of a spacecraft to navigate independent of contact with Earth-based resources. Optical navigation techniques are proposed as a solution to the problem of navigating in a planetary system without requiring navigation information from Earth. A detailed discussion of optical sensor hardware and error sources leads to new high fidelity math models for optical sensor performance that may be used in navigation simulations. Algorithms are developed that allow optical data to be used for the estimation of spacecraft position, velocity, and attitude. Sequential measurements are processed using traditional filtering techniques. Additionally, for the case of attitude estimation, a new attitude filter called Sequential Optimal Attitude Routine (SOAR) is presented. The models and techniques developed in this dissertation are demonstrated in two case studies: (1) navigation of a spacecraft performing a planetary fly-by using real images from the June 2007 MESSENGER fly-by of Venus and (2) navigation of a spacecraft in cislunar space on a return trajectory from the Moon.


Navigation and Tracking in Space: Analysis and Algorithms

Navigation and Tracking in Space: Analysis and Algorithms

Author: Sanat K. Biswas

Publisher: Artech House

Published: 2023-12-31

Total Pages: 209

ISBN-13: 1630819212

DOWNLOAD EBOOK

This book focuses on the navigation and tracking of artificial space objects, with emphasis on modelling the dynamics in a wide range of space missions, including: earth-orbiting satellite missions, launch and re-entry missions as well as interplanetary missions. The book guides you in designing suitable estimation algorithms for each type of mission. It also helps you in addressing non-linearity in designing navigation algorithms for space missions, and walks you through the process for choosing estimators for navigation and tracking of space vehicles. You’ll find specific details on earth-orbiting satellite tracking and navigation that helps you determine precise orbit, and will understand how to get navigation and tracking results using the Least Square Estimation and the Extended Kalman Filter (EKF) for simulated observations. You also learn how to address tracking performance of spacecraft in interplanetary trajectories that are affected by a diverse set of problems, such low signal power, intermittent observations, observations at low rate and delays. Techniques for designing navigation and tracking algorithms to address these problems are delineated. The book also provides in-depth coverage of multi-object tracking, relevant data association and estimation algorithms in the Situational Space Awareness context. MATLAB /Simulink based software is provided for simulation and simulated data set. This is an excellent reference and practical tool for professionals in the field of Guidance, Navigation and Control, along with researchers and advanced students in the field of space vehicle navigation, tracking, guidance and control.


Space Vehicle Dynamics and Control

Space Vehicle Dynamics and Control

Author: Bong Wie

Publisher: AIAA

Published: 1998

Total Pages: 692

ISBN-13: 9781563472619

DOWNLOAD EBOOK

A textbook that incorporates the latest methods used for the analysis of spacecraft orbital, attitude, and structural dynamics and control. Spacecraft dynamics is treated as a dynamic system with emphasis on practical applications, typical examples of which are the analysis and redesign of the pointing control system of the Hubble Space Telescope and the analysis of an active vibrations control for the COFS (Control of Flexible Structures) Mast Flight System. In addition to the three subjects mentioned above, dynamic systems modeling, analysis, and control are also discussed. Annotation copyrighted by Book News, Inc., Portland, OR