Pilot's Handbook of Aeronautical Knowledge, created by the Federal Aviation Administration, is the official reference manual for pilots at all levels. An indispensable and invaluable encyclopedia, it deals with all aspects of aeronautical information. Each chapter focuses on a different area that pilots are tested on in flight school and must need to know before they fly a plane on of their own. These topics include: aircraft structure principles of aerodynamics flight controls aircraft systems flight instruments and more Flight manuals and documentation are also covered, as is specialized information on such matters as weight and balance, aircraft performance, weather, navigation, airport operations, aeromedical factors, and decision-making while flying. An updated appendix, detailed index, and full glossary make this book easy to navigate and useful in quick reference situations.
Chapter 1: Introduction to Flying offers a brief history of flight, introduces the history and role of the FAA in civil aviation, FAA Regulations and standards, government references and publications, eligibility for pilot certificates, available routes to flight instructions, the role of the Certificated Flight Instructor (FI) and Designated Pilot Examiner (DPE) in flight training, and Practical Test Standards (PTS). Chapter 2: Aircraft Structure An aircraft is a device that is used, or intended to be used, for flight, according to the current Title 14 of the Code of Federal Regulations (14CFR) Part I. This chapter provides a brief introduction to the structure of aircraft and uses an airplane for most illustrations. Light Sport Aircraft (LSA), such as wight-shift control, balloon, glider, powered parachute, and gyroplane have their own handbooks to include detailed information regarding aerodynamics and control. Chapter 3: Principles of Flight This chapter examines the fundamental physical laws governing the forces acting on an aircraft in flight, and what effect these natural laws and forces have on the performance characteristics of aircraft. To control an aircraft, be it an airplane, helicopter, glider, or balloon, the pilot must understand the principles involved and learn to use or counteract these natural forces. Chapter 4 Aerodynamics of Flight This chapter discusses the aerodynamics of flight – how design, weight, load factors, and gravity affect an aircraft during flight maneuvers. The four forces acting on an aircraft in straight-and-level, unaccelerated flight are thrust, drag, lift, and weight. Chapter 5 Flight Controls This chapter focuses on the flight control systems a pilot uses to control the forces of flight, and the aircraft’s direction and attitude. It should be noted that flight control systems and characteristics can vary greatly depending on the type of aircraft flown. The most basic flight control system designs are mechanical and date to early aircraft. They operate with a collection of mechanical parts such as rods, cables, pulleys, and sometimes chains to transmit the forces of the flight deck controls to the control surfaces. Chapter 6 Aircraft Systems This chapter covers the primary systems found on most aircraft. These include the engine, propeller, induction, ignition, as well as the fuel, lubrication, cooling, electrical , landing gear, and environmental control systems. Chapter 7 Flight Instruments This chapter addresses the pitot-static system and associated instruments, the vacuum system and related instruments, gyroscopic instruments, and the magnetic compass. When a pilot understands how each instrument works and recognizes when an instrument is malfunctioning , he or she can safely utilize the instruments to their fullest potential. Chapter 8 Flight Manuals and Other Documents The chapter covers airplane flight manuals (AFM), the pilot’s operating handbook (POH), and aircraft documents pertaining to ownership, airworthiness, maintenance, and operations with inoperative equipment. Knowledge of these required documents and manuals is essential for a pilot to conduct a safe flight. Chapter 9 Weight and Balance Compliance with the weight and balance limits of any aircraft is critical to flight safety. Operating above the maximum weight limitation compromises the structural integrity of an aircraft and adversely affects its performance. Operations with the center of gravity (CG ) outside the approved limits results in control difficulty. Chapter 10 Aircraft Performance This chapter discusses the factors that affect aircraft performance which include the aircraft weight, atmospheric conditions, runway environment, and the fundamental physical laws governing the forces acting on an aircraft. Chapter 11 Weather Theory This chapter explains basic weather theory and offers pilots background knowledge of weather principles. It is designed to help them gain a good understanding of how weather affects daily flying activities. Understanding the theories behind weather helps a pilot make sound weather decisions based on reports and forecasts obtained from a Flight Service Station (FSS) weather specialist and other aviation weather services. Be it a local flight or a long cross-country flight, decisions based on weather can dramatically affect the safety of the flight. Chapter 12 Aviation Weather Services In aviation, weather service is a combined effort of the National Weather Service (NWS), Federal Aviation Administration (FAA), Department of Defense, DOD), other aviation groups and individuals. While weather forecasts are not 100 percent accurate, meteorologists, through careful scientific study and computer modeling, have the ability to predict weather patterns, trends, and characteristics with increasing accuracy. These reports and forecasts enable pilots to make informed decisions regarding weather and flight safety before and during a flight. Chapter 13 Airport Operations This chapter focuses on airport operations both in the air and on the surface. By adhering to established procedures, both airport operations and safety are enhanced. Chapter 14 Airspace This chapter introduces the various classifications of airspace and provides information on the requirements to operate in such airspace. For further information, consult the AIM and 14 CFR parts 71, 73, and 91. Chapter 15 Navigation This chapter provides an introduction to cross-country flying under visual flight rules (VFR). It contains practical information for planning and executing cross-country flights for the beginning pilot. Chapter 16 Aeromedcial Factors It is important for a pilot to be aware of the mental and physical standards required for the type of flying done. This chapter provides information on medical certification and on a variety of aeromedical factors related to flight activities. Chapter 17 Aeronautical Decision-Making This chapter focuses on helping the pilot improve his or her ADM skills with the goal of mitigating the risk factors associated with flight in both classic and automated aircraft. In the end, the discussion is not so much about aircraft, but about the people who fly them. Includes Appendix with tables of information, a glossary and an index.
The workbook companion to the Pilot's Handbook of Aeronautical Knowledge. With the Grounds School Workbook for Private Pilots, student pilots can teach themselves the ground school portion of the flight training. The book has reading assignments and exercises that are tied to the FAA's Pilot's Handbook of Aeronautical Knowledge. Working one module at a time, a student pilot can learn and better understand the things required of a Private Pilot.
Pilot's Handbook of Aeronautical Knowledge, created by the Federal Aviation Administration, is the official reference manual for pilots at all levels. An indispensable and invaluable encyclopedia, it deals with all aspects of aeronautical information. Chapters include: aircraft structure, principles of aerodynamics, flight controls, aircraft systems, and flight instruments. Flight manuals and documentation are also covered, as is specialized information on such matters as weight and balance, aircraft performance, weather, navigation, airport operations, aeromedical factors, and decision-making while flying. A detailed index and full glossary make this book easy to navigate and useful in quick reference situations.
The Pilot’s Handbook of Aeronautical Knowledge provides basic knowledge that is essential for pilots. This handbook introduces pilots to the broad spectrum of knowledge that will be needed as they progress in their pilot training. Except for the Code of Federal Regulations pertinent to civil aviation, most of the knowledge areas applicable to pilot certification are presented. This handbook is useful to beginning pilots, as well as those pursuing more advanced pilot certificates. This handbook includes the following chapters: Chapter 1. Introduction to Flying Chapter 2. Aeronautical Decision-Making Chapter 3. Aircraft Construction Chapter 4. Principles of Flight Chapter 5. Aerodynamics of Flight Chapter 6: Flight Controls Chapter 7. Aircraft Systems Chapter 8. Flight Instruments Chapter 9. Flight Manuals and Other Documents Chapter 10. Weight and Balance Chapter 11. Aircraft Performance Chapter 12. Weather Theory Chapter 13. Aviation Weather Services Chapter 14. Airport Operations Chapter 15. Airspace Chapter 16. Navigation Chapter 17. Aeromedical Factors Appendix A. Performance Data for Cessna Model 172R and Challenger 605 Appendix B. Acronyms, Abbreviations, and NDTAM Contractions Appendix C. Airport Signs and Markings
Every day in the United States, over two million men, women, and children step onto an aircraft and place their lives in the hands of strangers. As anyone who has ever flown knows, modern flight offers unparalleled advantages in travel and freedom, but it also comes with grave responsibility and risk. For the first time in its history, the Federal Aviation Administration has put together a set of easy-to-understand guidelines and principles that will help pilots of any skill level minimize risk and maximize safety while in the air. The Risk Management Handbook offers full-color diagrams and illustrations to help students and pilots visualize the science of flight, while providing straightforward information on decision-making and the risk-management process.
The first official book released by the Federal Aviation Administration (FAA) for the sole purpose of glider and sailplane instruction and knowledge, this book answers all the questions related to glider flying and soaring found in the FAA's required knowledge exams for pilots. Included is detailed coverage on decision making, aerodynamics, aircraft performance, soaring weather, flight instruments, medical factors, communications, and regulations, all in relation to the world of glider flying. Through full-colour graphics and detailed descriptions, pilots are better able to comprehend and visualise the manoeuvres within the book.