Piezotronics and Piezo-Phototronics

Piezotronics and Piezo-Phototronics

Author: Zhong Lin Wang

Publisher: Springer Science & Business Media

Published: 2013-01-11

Total Pages: 254

ISBN-13: 364234237X

DOWNLOAD EBOOK

The fundamental principle of piezotronics and piezo-phototronics were introduced by Wang in 2007 and 2010, respectively. Due to the polarization of ions in a crystal that has non-central symmetry in materials, such as the wurtzite structured ZnO, GaN and InN, a piezoelectric potential (piezopotential) is created in the crystal by applying a stress. Owing to the simultaneous possession of piezoelectricity and semiconductor properties, the piezopotential created in the crystal has a strong effect on the carrier transport at the interface/junction. Piezotronics is for devices fabricated using the piezopotential as a “gate” voltage to control charge carrier transport at a contact or junction. The piezo-phototronic effect uses the piezopotential to control the carrier generation, transport, separation and/or recombination for improving the performance of optoelectronic devices, such as photon detector, solar cell and LED. The functionality offered by piezotroics and piezo-phototronics are complimentary to CMOS technology. There is an effective integration of piezotronic and piezo-phototronic devices with silicon based CMOS technology. Unique applications can be found in areas such as human-computer interfacing, sensing and actuating in nanorobotics, smart and personalized electronic signatures, smart MEMS/NEMS, nanorobotics and energy sciences. This book introduces the fundamentals of piezotronics and piezo-phototronics and advanced applications. It gives guidance to researchers, engineers and graduate students.


Piezotronics and Piezo-Phototronics

Piezotronics and Piezo-Phototronics

Author: Zhong Lin Wang

Publisher: Springer Nature

Published: 2023-07-24

Total Pages: 576

ISBN-13: 3031314972

DOWNLOAD EBOOK

Co-authored by the discoverer of the piezotronic effect, this book is a fundamental and comprehensive survey of piezotronics and piezo-phototronics. Piezotronics is a term broadly applied to devices fabricated using the piezopotential as a “gate” voltage to tune/control charge carrier transport at a contact or junction. The piezo-phototronic effect describes the use of the piezopotential to control the carrier generation, transport, separation and/or recombination for improving the performance of optoelectronic devices. The book first introduces the theory of the piezotronic effect and its applications in transistors, sensors, and catalysis. Subsequent chapters comprehensively cover the fundamentals of the piezo-phototronic effect and its impacts on photon sensors, solar cells, and LEDs. The updated and significantly expanded second edition covers the most recent advances and breakthroughs in this field over the last decade — gas, chemical, and biological nanosensors; quantum dots, wells, and wires; piezocatalysis; the piezo-photonic effect; and the pyro-phototronic effect. This seminal book serves as a basic text for scientists and students in the field of piezotronic devices and third-generation semiconductors.


Amorphous Semiconductors

Amorphous Semiconductors

Author: Kazuo Morigaki

Publisher: John Wiley & Sons

Published: 2017-03-06

Total Pages: 286

ISBN-13: 1118757920

DOWNLOAD EBOOK

Amorphous semiconductors are subtances in the amorphous solid state that have the properties of a semiconductor and which are either covalent or tetrahedrally bonded amorphous semiconductors or chelcogenide glasses. Developed from both a theoretical and experimental viewpoint Deals with, amongst others, preparation techniques, structural, optical and electronic properties, and light induced phenomena Explores different types of amorphous semiconductors including amorphous silicon, amorphous semiconducting oxides and chalcogenide glasses Applications include solar cells, thin film transistors, sensors, optical memory devices and flat screen devices including televisions


Laser Diode Microsystems

Laser Diode Microsystems

Author: Hans Zappe

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 349

ISBN-13: 3662082497

DOWNLOAD EBOOK

Laser Diode Microsystems provides the reader with the basic knowledge and understanding required for using semiconductor laser diodes in optical microsystems and micro-optical electromechanic systems. This tutorial addresses the fundamentals of semiconductor laser operation and design, coupled with an overview of the types of laser diodes suitable for use in Microsystems, along with their distinguishing characteristics. Emphasis is placed on laser diode characterization and measurement as well as the assembly techniques and optical accessories required for incorporation of semiconductor lasers into complex microsystems. Equipped with typical results and calculation examples, this hand-on text helps readers to develop a feel for how to choose a laser diode, characterize it and incorporate it into a microsystem.


Graphene

Graphene

Author: Hongwei Zhu

Publisher: Academic Press

Published: 2017-09-01

Total Pages: 400

ISBN-13: 9780128126516

DOWNLOAD EBOOK

Graphene: Fabrication, Characterizations, Properties and Applications presents a comprehensive review of the current status of graphene, especially focused on synthesis, fundamental properties and future applications, aiming to giving a comprehensive reference for scientists, researchers and graduate students from various sectors. Graphene, a single atomic layer of carbon hexagons, has stimulated a lot of research interest owing to its unique structure and fascinating properties. The book is devoted to understanding graphene fundamentally yet comprehensively through a wide range of issues in the areas of materials science, chemistry, physics, electronics and biology. The book is an important resource of comprehensive knowledge pertinent to graphene and to related expanding areas. This valuable book will attract scientists, researchers and graduate students in physics and chemistry because it aims at providing all common knowledge of these communities including essential aspects of material synthesis and characterization, fundamental physical properties and detailed chapters focused on the most promising applications. Presents a comprehensive and up-to-date review of current research of graphene, especially focused on synthesis, fundamental properties and future applications Includes not only fundamental knowledge of graphene materials, but also an overview of special properties for different potential applications of graphene in the fields of solar cells, photodetectors, energy storage, composites, environmental materials and bio-materials Emphasizes graphene-based applications that are quickly emerging as potential building blocks for nanotechnological commercial applications


Piezoelectric Energy Harvesting

Piezoelectric Energy Harvesting

Author: Alper Erturk

Publisher: John Wiley & Sons

Published: 2011-04-04

Total Pages: 377

ISBN-13: 1119991358

DOWNLOAD EBOOK

The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-based energy harvesting using piezoelectric transduction. Piezoelectric Energy Harvesting provides the first comprehensive treatment of distributed-parameter electromechanical modelling for piezoelectric energy harvesting with extensive case studies including experimental validations, and is the first book to address modelling of various forms of excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving loads, thus ensuring its relevance to engineers in fields as disparate as aerospace engineering and civil engineering. Coverage includes: Analytical and approximate analytical distributed-parameter electromechanical models with illustrative theoretical case studies as well as extensive experimental validations Several problems of piezoelectric energy harvesting ranging from simple harmonic excitation to random vibrations Details of introducing and modelling piezoelectric coupling for various problems Modelling and exploiting nonlinear dynamics for performance enhancement, supported with experimental verifications Applications ranging from moving load excitation of slender bridges to airflow excitation of aeroelastic sections A review of standard nonlinear energy harvesting circuits with modelling aspects.


Triboelectric Nanogenerators

Triboelectric Nanogenerators

Author: Zhong Lin Wang

Publisher: Springer

Published: 2016-08-17

Total Pages: 537

ISBN-13: 3319400398

DOWNLOAD EBOOK

This book introduces an innovative and high-efficiency technology for mechanical energy harvesting. The book covers the history and development of triboelectric nanogenerators, basic structures, working principles, performance characterization, and potential applications. It is divided into three parts: Part A illustrates the fundamental working modes of triboelectric nanogenerators with their prototype structures and theoretical analysis; Part B and Part C introduce two categories of applications, namely self-powered systems and self-powered active sensors. The book will be an ideal guide to scientists and engineers beginning to study triboelectric nanogenerators or wishing to deepen their knowledge of the field. Readers will be able to place the technical details about this technology in context, and acquire the necessary skills to reproduce the experimental setups for fabrication and measurement.


Handbook of Microscopy for Nanotechnology

Handbook of Microscopy for Nanotechnology

Author: Nan Yao

Publisher: Springer Science & Business Media

Published: 2006-07-12

Total Pages: 745

ISBN-13: 1402080069

DOWNLOAD EBOOK

Nanostructured materials take on an enormously rich variety of properties and promise exciting new advances in micromechanical, electronic, and magnetic devices as well as in molecular fabrications. The structure-composition-processing-property relationships for these sub 100 nm-sized materials can only be understood by employing an array of modern microscopy and microanalysis tools. Handbook of Microscopy for Nanotechnology aims to provide an overview of the basics and applications of various microscopy techniques for nanotechnology. This handbook highlights various key microcopic techniques and their applications in this fast-growing field. Topics to be covered include the following: scanning near field optical microscopy, confocal optical microscopy, atomic force microscopy, magnetic force microscopy, scanning turning microscopy, high-resolution scanning electron microscopy, orientational imaging microscopy, high-resolution transmission electron microscopy, scanning transmission electron microscopy, environmental transmission electron microscopy, quantitative electron diffraction, Lorentz microscopy, electron holography, 3-D transmission electron microscopy, high-spatial resolution quantitative microanalysis, electron-energy-loss spectroscopy and spectral imaging, focused ion beam, secondary ion microscopy, and field ion microscopy.


Piezoelectric Nanomaterials for Biomedical Applications

Piezoelectric Nanomaterials for Biomedical Applications

Author: Gianni Ciofani

Publisher: Springer Science & Business Media

Published: 2012-03-31

Total Pages: 250

ISBN-13: 3642280447

DOWNLOAD EBOOK

Nanoscale structures and materials have been explored in many biological applications because of their novel and impressive physical and chemical properties. Such properties allow remarkable opportunities to study and interact with complex biological processes. This book analyses the state of the art of piezoelectric nanomaterials and introduces their applications in the biomedical field. Despite their impressive potentials, piezoelectric materials have not yet received significant attention for bio-applications. This book shows that the exploitation of piezoelectric nanoparticles in nanomedicine is possible and realistic, and their impressive physical properties can be useful for several applications, ranging from sensors and transducers for the detection of biomolecules to “sensible” substrates for tissue engineering or cell stimulation.


Quantum Confined Excitons in 2-Dimensional Materials

Quantum Confined Excitons in 2-Dimensional Materials

Author: Carmen Palacios-Berraquero

Publisher: Springer

Published: 2018-11-02

Total Pages: 125

ISBN-13: 3030014827

DOWNLOAD EBOOK

This book presents the first established experimental results of an emergent field: 2-dimensional materials as platforms for quantum technologies, specifically through the optics of quantum-confined excitons. It also provides an extensive review of the literature from a number of disciplines that informed the research, and introduces the materials of focus – 2d Transition Metal Dichalcogenides (2d-TMDs) – in detail, discussing electronic and chemical structure, excitonic behaviour and response to strain. This is followed by a brief overview of quantum information technologies, including concepts such as single-photon sources and quantum networks. The methods chapter addresses quantum optics techniques and 2d-material processing, while the results section shows the development of a method to deterministically create quantum dots (QDs) in the 2d-TMDs, which can trap single-excitons; the fabrication of atomically thin quantum light-emitting diodes to induce all-electrical single-photon emission from the QDs, and lastly, the use of devices to controllably trap single-spins in the QDs –the first step towards their use as optically-addressable matter qubits.