Piezoelectric Energy Harvesting

Piezoelectric Energy Harvesting

Author: Alper Erturk

Publisher: John Wiley & Sons

Published: 2011-04-04

Total Pages: 377

ISBN-13: 1119991358

DOWNLOAD EBOOK

The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-based energy harvesting using piezoelectric transduction. Piezoelectric Energy Harvesting provides the first comprehensive treatment of distributed-parameter electromechanical modelling for piezoelectric energy harvesting with extensive case studies including experimental validations, and is the first book to address modelling of various forms of excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving loads, thus ensuring its relevance to engineers in fields as disparate as aerospace engineering and civil engineering. Coverage includes: Analytical and approximate analytical distributed-parameter electromechanical models with illustrative theoretical case studies as well as extensive experimental validations Several problems of piezoelectric energy harvesting ranging from simple harmonic excitation to random vibrations Details of introducing and modelling piezoelectric coupling for various problems Modelling and exploiting nonlinear dynamics for performance enhancement, supported with experimental verifications Applications ranging from moving load excitation of slender bridges to airflow excitation of aeroelastic sections A review of standard nonlinear energy harvesting circuits with modelling aspects.


Piezoelectric Vibration Energy Harvesting

Piezoelectric Vibration Energy Harvesting

Author: Sajid Rafique

Publisher: Springer

Published: 2017-11-03

Total Pages: 181

ISBN-13: 3319694421

DOWNLOAD EBOOK

The electromechanical coupling effect introduced by piezoelectric vibration energy harvesting (PVEH) presents serious modeling challenges. This book provides close-form accurate mathematical modeling and experimental techniques to design and validate dual function PVEH vibration absorbing devices as a solution to mitigate vibration and maximize operational efficiency. It includes in-depth experimental validation of a PVEH beam model based on the analytical modal analysis method (AMAM), precisely identifying electrical loads that harvest maximum power and induce maximum electrical damping. The author's detailed analysis will be useful for researchers working in the rapidly emerging field of vibration based energy harvesting, as well as for students investigating electromechanical devices, piezoelectric sensors and actuators, and vibration control engineering.


Vibration Control of Active Structures

Vibration Control of Active Structures

Author: A. Preumont

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 376

ISBN-13: 0306484226

DOWNLOAD EBOOK

My objective in writing this book was to cross the bridge between the structural dynamics and control communities, while providing an overview of the potential of SMART materials for sensing and actuating purposes in active vibration c- trol. I wanted to keep it relatively simple and focused on systems which worked. This resulted in the following: (i) I restricted the text to fundamental concepts and left aside most advanced ones (i.e. robust control) whose usefulness had not yet clearly been established for the application at hand. (ii) I promoted the use of collocated actuator/sensor pairs whose potential, I thought, was strongly underestimated by the control community. (iii) I emphasized control laws with guaranteed stability for active damping (the wide-ranging applications of the IFF are particularly impressive). (iv) I tried to explain why an accurate pred- tion of the transmission zeros (usually called anti-resonances by the structural dynamicists) is so important in evaluating the performance of a control system. (v) I emphasized the fact that the open-loop zeros are more difficult to predict than the poles, and that they could be strongly influenced by the model trun- tion (high frequency dynamics) or by local effects (such as membrane strains in piezoelectric shells), especially for nearly collocated distributed actuator/sensor pairs; this effect alone explains many disappointments in active control systems.


Nonlinear Structures and Systems, Volume 1

Nonlinear Structures and Systems, Volume 1

Author: Gaetan Kerschen

Publisher: Springer

Published: 2019-06-28

Total Pages: 271

ISBN-13: 303012391X

DOWNLOAD EBOOK

Nonlinear Structures & Systems, Volume 1: Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics, 2019, the first volume of eight from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Nonlinear Dynamics, including papers on: Nonlinear Reduced-order Modeling Jointed Structures: Identification, Mechanics, Dynamics Experimental Nonlinear Dynamics Nonlinear Model & Modal Interactions Nonlinear Damping Nonlinear Modeling & Simulation Nonlinearity & System Identification


Mechatronics

Mechatronics

Author: A. Preumont

Publisher: Springer Science & Business Media

Published: 2006-09-09

Total Pages: 200

ISBN-13: 1402046960

DOWNLOAD EBOOK

This volume treats Lagrange equations for electromechanical systems, including piezoelectric transducers and selected applications. It is essentially an extension to piezoelectric systems of the work by Crandall et al.:"Dynamics of Mechanical and Electromechanical Systems", published in 1968. The first three chapters contain classical material based on this and other well known standard texts in the field. Some applications are new and include material not published in a monograph before.


Modern Inertial Technology

Modern Inertial Technology

Author: Anthony Lawrence

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 295

ISBN-13: 1461217342

DOWNLOAD EBOOK

A description of the inertial technology used for guidance, control, and navigation, discussing in detail the principles, operation, and design of sensors, gyroscopes, and accelerometers, as well as the advantages and disadvantages of particular systems. An engineer with long practical experience in the field, the author elucidates such recent developments as fibre-optic gyroscopes, solid-state accelerometers, and the global positioning system. This will be of interest to researchers and practising engineers involved in systems engineering, aeronautics, space research, and navigation on both land and sea.


Practical Radio Engineering and Telemetry for Industry

Practical Radio Engineering and Telemetry for Industry

Author: David Bailey

Publisher: Elsevier

Published: 2003-06-16

Total Pages: 296

ISBN-13: 008047389X

DOWNLOAD EBOOK

Instrumentation and control, and electrical power engineering are increasingly reliant on radio-based communication technology. This is a comprehensive book covering the essentials of telemetry and radio communications. It explains the principles of telemetry and radio communications, describes their application and equips you with the skills to analyse, specify and debug telemetry and radio communications systems.Key issues addressed in this book are: * how to design and install radio (wireless) links* apply latest satellite technologies to your telemetry system* how to design and install microwave links* troubleshoot telemetry communications problems* tips, tricks and traps with radio links·A guide to the design, installation and utilization of radio applications in instrumentation and control, and electrical power engineering·Explains the principles of telemetry and radio communications, describes their application and equips you with the skills to analyse, specify and debug telemetry and radio communications systems·Addresses topical areas such as designing and installing wireless communications links, the application of satellite technologies in telemetry, microwave links, etc.


Piezoelectric Energy Harvesting Systems

Piezoelectric Energy Harvesting Systems

Author: Junrui Liang

Publisher: Springer

Published: 2024-03-12

Total Pages: 0

ISBN-13: 9783662536025

DOWNLOAD EBOOK

This book investigates in detail piezoelectric energy harvesting (PEH) technology, assessing its potential us to replace conventional electrochemical batteries with kinetic energy harvesters as sustainable power supplies in wireless sensor network (WSN) devices and mobile electronics, which are originally exposed to ambient vibration. Studies on PEH have attracted engineers and scientists from various disciplines, such as electrical, mechanical, materials, civil and biomedical engineering. Pursuing a holistic approach, the book establishes a fundamental framework for this topic, while emphasizing the importance of integrated analysis and the significant influence of circuit issues in the design and optimization of PEH systems. This approach will help readers from different disciplines recognize the essential aspects of and milestones towards the optimization of PEH systems in practice. The book is intended for undergraduate and graduate students who are interested in energy harvesting technology, researchers investigating kinetic energy harvesting systems, and structure/circuit design engineers working on self-powered WSNs or other energy harvesting applications.


Harmonic Balance for Nonlinear Vibration Problems

Harmonic Balance for Nonlinear Vibration Problems

Author: Malte Krack

Publisher: Springer

Published: 2019-03-23

Total Pages: 167

ISBN-13: 3030140237

DOWNLOAD EBOOK

This monograph presents an introduction to Harmonic Balance for nonlinear vibration problems, covering the theoretical basis, its application to mechanical systems, and its computational implementation. Harmonic Balance is an approximation method for the computation of periodic solutions of nonlinear ordinary and differential-algebraic equations. It outperforms numerical forward integration in terms of computational efficiency often by several orders of magnitude. The method is widely used in the analysis of nonlinear systems, including structures, fluids and electric circuits. The book includes solved exercises which illustrate the advantages of Harmonic Balance over alternative methods as well as its limitations. The target audience primarily comprises graduate and post-graduate students, but the book may also be beneficial for research experts and practitioners in industry.